Floreano I	Dario			
Cursus	Sem.	Туре	Language of	English
Microtechnics	MA2, MA4	Opt.	teaching	English
Robotics, Control and Intelligent	t Systems	Opt.	Credits	3
Robotics	MA2, MA4	Opt.	Withdrawal Session	Unauthorized Summer
			Semester Exam Workload	Spring Written 90h
			Weeks	14
			retirer de	3 weekly 2 weekly 1 weekly 60 autorisé de se cette matière ai d'inscription.

MICRO-515 Evolutionary robotics

Summary

The course describes theories, methods, and technologies for designing robots and artificial systems inspired by evolution, development, and learning. It also shows how robotic models can help to understand biological systems. The course ends with a discussion of future bio-hybrid robots.

Content

- Natural and Artificial Evolution
- Evolutionary Computation and Applications
- Evolution of Neural Systems
- Advanced Evolutionary Algorithms
- Evolutionary Robotics
- Developmental Systems
- Evolution of Collective Systems
- Edible robotics
- Bio-hybrid robots

Learning Prerequisites

Important concepts to start the course Programming skills (Phython, Java, C++)

Learning Outcomes

By the end of the course, the student must be able to:

- Apply new tools for software and hardware engineering
- Translate acquired theoretical knowledge in practical implementations during laboratory sessions

Teaching methods

Lectures, software exercises, and exercises and project involving 3D printing, assembly, programming, and

characterization of modular robot with neural controller.

Expected student activities

Attending lectures, asking critical questions, taking all exercises and completing assignments for the following week, forming groups and performing collaboratively project woth physical robots, writing and presenting project results

Assessment methods

Mini-project report/presentation + written exam

Supervision

Office hours	No
Assistants	Yes
Forum	Yes

Resources

Bibliography Floreano, D. & Mattiussi, C. (2008) Bioinspired Artificial Intelligence. MIT Press (selected chapters)

Ressources en bibliothèque

Bioinspired Artificial Intelligence / Floreano

Moodle Link

• https://go.epfl.ch/MICRO-515