

# ENG-466 Distributed intelligent systems

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Biocomputing minor                        | Е        | Opt. |
| Computational science and Engineering     | MA2, MA4 | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Data Science                              | MA2, MA4 | Opt. |
| Electrical and Electronical Engineering   | MA2, MA4 | Opt. |
| Energy Science and Technology             | MA2, MA4 | Opt. |
| Environmental Sciences and Engineering    | MA2, MA4 | Opt. |
| Mechanical engineering                    | MA2, MA4 | Opt. |
| Microtechnics                             | MA2, MA4 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| Robotics                                  | MA2, MA4 | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 5        |
| Session              | Summer   |
| Semester             | Spring   |
| Exam                 | Oral     |
| Workload             | 150h     |
| Weeks                | 14       |
| Hours                | 5 weekly |
| Lecture              | 2 weekly |
| Exercises            | 3 weekly |
| Number of positions  |          |

#### Remark

Pas donné en 2023-24

### **Summary**

The goal of this course is to provide methods and tools for modeling distributed intelligent systems as well as designing and optimizing coordination strategies. The course is a well-balanced mixture of theory and practical activities.

#### Content

- Introduction to key concepts such as self-organization and tools used in the course
- Examples of natural, artificial and hybrid distributed intelligent systems
- Modeling methods: sub-microscopic, microscopic, macroscopic, multi-level; spatial and non-spatial; mean field, approximated and exact approaches
- · Machine-learning methods: single- and multi-agent techniques; expensive optimization problems and noise resistance
- Coordination strategies and distributed control: direct and indirect schemes; algorithms and methods; performance evaluation
- · Application examples in distributed sensing and action

## **Keywords**

Artificial intelligence, swarm intelligence, distributed robotics, sensor networks, modeling, machine-learning, control

## **Learning Prerequisites**

### Required courses

Fundamentals in analysis, probability, and programming for both compiled and interpreted languages

## **Recommended courses**

Basic knowledge in statistics, programming language used in the course (C, Matlab, Python), and signals



#### and systems

## **Learning Outcomes**

By the end of the course, the student must be able to:

- · Design control algorithms
- Formulate a model at different level of abstraction for a distributed intelligent system
- · Analyze a model of a distributed intelligent system
- Analyze a distributed coordination strategy/algorithm
- Design a distributed coordination strategy/algorithm
- Implement code for single robot and multi-robot systems
- Carry out systematic performance evaluation of a distributed intelligent system
- Apply modeling and design methods to specific problems requiring distributed sensing and action
- · Optimize a controller or a set of possibly coordinated controllers using model-based or data-driven methods

### Transversal skills

- Demonstrate a capacity for creativity.
- Access and evaluate appropriate sources of information.
- · Collect data.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Write a scientific or technical report.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.

## **Teaching methods**

Ex-cathedra lectures, assisted exercises, and homework in team

# **Expected student activities**

Attending lectures, carrying out exercises and the course project, and reading handouts.

## **Assessment methods**

Oral exam (60%) with continuous assessment during the semester (40%).

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

# Resources

#### **Bibliography**

Lecture notes, selected papers and book chapters distributed at each lecture.

### Websites

• https://disal.epfl.ch/teaching/distributed\_intelligent\_systems/

#### Moodle Link



• https://go.epfl.ch/ENG-466

Prerequisite for

R&D activities in engineering