MICRO-573 Deep learning for optical imaging

Psaltis Demetri				
Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA2, MA4	Opt.	teaching Credits	LIIGIISII
Microtechnics	MA2, MA4	Opt.		3
Minor in Imaging	E	Opt.	Withdrawal Session	Unauthorized Summer
Photonics		Opt.	Semester	Spring
Robotics	MA2, MA4	Opt.	Exam	During the semester
			Workload	90h
			Weeks	14
			Hours	3 weekly
			Lecture	2 weekly
			Exercises	1 weekly
			Number of	
			positions	
				autorisé de se

retirer de cette matière après le délai d'inscription.

Summary

This course will focus on the practical implementation of artificial neural networks (ANN) using the open-source TensorFlow machine learning library developed by Google for Python.

Content

After a brief introduction to deep neural networks, the course will focus on the use and functionality of TensorFlow, and how it can be used to build models of different complexity for different types of optical imaging applications. Models will range from simple linear regression to convolutional neural networks (CNN) for image classification and mapping. The course will be assessed through coursework and group projects where the students will apply TensorFlow to specific machine learning applications.

Keywords

Deep learning, TensorFlow, Artificial neural networks, Imaging

Learning Prerequisites

Required courses Proficiency in Python, basic optics

Recommended courses MICRO-421 Imaging Optics

Important concepts to start the course Python familiarity, linear systems, basic optics

Learning Outcomes

By the end of the course, the student must be able to:

- Implement
- Choose
- Demonstrate

Apply

Teaching methods

2 hours/week lecture

1 hour/week interactive artificial neural network develoment for selected problems

Resources

Websites

• http://Tensor Flow

Moodle Link

• https://go.epfl.ch/MICRO-573