PHYS-441 Statistical physics of biomacromolecules

De Los Rios Paolo

Cursus	Sem. Type	Language of	English	
Ingphys	MA1, MA3	Opt.	teaching Credits Session Semester Exam Workload Weeks	English
Life Sciences Engineering	MA1, MA3	Opt.		4 Winter Fall Oral 120h 14
Physicien	MA1, MA3	Opt.		
Physics of living systems minor	Н	Opt.		
Physics		Opt.		
			Hours	4 weekly
			Lecture	2 weekly

Summary

Introduction to the application of the notions and methods of theoretical physics to problems in biology.

Content

1. Introduction to polymer theory: on and off-lattice polymers; statistical properties; exact, numerical and approximate results; correlation length; self-avoidance.

2. Interacting polymers: experiments and models; analytical and

numerical solutions of the models; phase diagram.

3. Proteins: their role in biology; basic components; experimental results;

models; analytical and numerical results.

4. Molecular Binding: Derivation of basic rules. Equilibrium and non-equilibrium binding.

5. Molecular Motors: how to use energy for directed motion.

Learning Prerequisites

Recommended courses Course of Statistical Physics

Learning Outcomes

By the end of the course, the student must be able to:

• Solve problems in polymers statistical physics

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedra. Exercises in class

Assessment methods

oral

Resources

EPFL

2 weekly

Exercises Number of positions

Moodle Link

• https://go.epfl.ch/PHYS-441