PHYS-435	Statistical	physics	Ш
	Statistical	physics	

	Wyart Matthieu				
Cursus		Sem.	Туре	Language of	English
Ingphys		MA1, MA3	Opt.	teaching	English
Physicien		MA1, MA3	Opt.	Credits Session	6 Winter
				Semester Exam Workload Weeks Hours Lecture Exercises Number of positions	Fall Written 180h 14 4 weekly 2 weekly 2 weekly

Summary

This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial optimisation, information theory and error correcting codes).

Content

- 1. Introduction to statistical field theory
- 2. Random walks and self-avoiding polymers
- 3. Percolation, Networks
- 4. Information theory and error correcting codes
- 5. Disorded systems (spin glasses) and combinatorial complexity

Learning Prerequisites

Recommended courses Statistical Physics II

Learning Outcomes

By the end of the course, the student must be able to:

Solve problems in complex systems

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods Ex cathedra. Exercises in class

Assessment methods

written exam

Resources Moodle Link

• https://go.epfl.ch/PHYS-435