

PHYS-427 Relativity and cosmology I

	Penedones João Miguel	
Cursus	Sem.	Type
Ingphys	MA1, MA3	Opt.
Physicien	MA1, MA3	Opt.

Language of teaching	English
Credits	6
Session	Winter
Semester	Fall
Exam	Written
Workload	180h
Weeks	14
Hours	4 weekly
Lecture	2 weekly
Exercises	2 weekly
Number of	
positions	

Summary

Introduce the students to general relativity and its classical tests.

Content

Special Relativity (Review):

- Lorentz transformations
- Energy-momentum tensor

General relativity:

- Equivalence principle
- Tensor analysis and physics in curved space-time
- Einstein's equations
- Schwarzschild solution
- · Classical tests of Einstein's theory
- Gravitational waves

Learning Prerequisites

Required courses

Analytical mechanics

Classical Electrodynamics

Important concepts to start the course

Special Relativity

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the basic concepts of special and general relativity
- Describe physical phenomena in different coordinate systems
- Compute Christofell symbols and curvatures from a given line element
- Solve Einstein's field equations for static spherically symmetric problems
- Explain the observational effects at the scale of the Solar System that cannot be described by Newtonian gravity

Teaching methods

Ex cathedra and exercices in classroom

Assessment methods

final written exam

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Bibliography

-

Ressources en bibliothèque

- Gravitation and Cosmology / Weinberg
- Gravitation / Mizner
- The classical theory of fields / Landau
- Spacetime and Geometry: an Introduction to General Relativity / Carroll
- A First Course in General Relativity / Schutz
- General relativity / Wald

Moodle Link

• https://go.epfl.ch/PHYS-427