Quantum electrodynamics and quantum optics

EPFL

Number of positions

Kir	openbe	ra Toł	bias
1.51	sponso	ig iok	nao

Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA1, MA3	Opt.	teaching	Linglish
Ingphys	MA1, MA3	Opt.	Credits Session	6 Winter
Minor in Quantum Science and Engineering	Н	Opt.	Semester	Fall
Photonics minor	Н	Opt. Exam	Written	
Physicien	MA1, MA3	Opt.	Workload Weeks	180h 14
Quantum Science and Engineering	MA1, MA3	Opt.	Hours	4 weekly
			Lecture	2 weekly
			Exercises	2 weekly

Summary

PHYS-453

This course on one hand develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover basis historic developments (coherent states, squeezed states, quantum theory of spontaneous emission) and moreover modern developments, e.g. quantum noise.

Content

Coherent states, Quantization of a Harmonic Oscillator

- Quantization of the electromagnetic field, quantization of electrical circuits
- Coherent states
- Fock states
- Squeezed states

• Measuring the Quantum States of Light:

- Homodyne detection
- Measurements, photon counting
- Representations (Q-function, Wigner function, P-representation)

Photon correlations

• HBT effect, g(2) measurements

• Strong coupling cavity QED.

- Light matter interaction, dipole approximation
- Quantum description of a laser
- Cavity QED Hamiltonian
- Dispersive limit of cQED
- Purcell effect

• Applications of Cavity QED:

- Generation of arbitrary quantum state of a Harmonic oscillator
- Quantum Metrology
- Dispersive regime of cavity QED, QND measurements of Two level systems (qubits)

• Quantum Nondemolition measurements (QND)

- Quantum backaction in linear measurements
- The standard quantum limit (SQL)
- Backaction evading measurements (BAE)

· Quantum theory of an amplifier

- QLE approach to negative temperature
- Noise temperature and added photons
- Phase sensitive and phase insensitive amplification processes

• Degenerate OPO and Squeezed light generation.

• Parametric amplification and squeezing using second harmonic generation

• Stochastic Schroedinger Equation and Measurement theory

• Quantum Jumps, quantum trajectories

• Other topics covered: Recent developments in quantum optics (quantum metrology, quantum communication, etc.), and use of Python Quantum Optical Toolbox to simulate open quantum systems

Learning Prerequisites

Recommended courses Quantum physics

Learning Outcomes

By the end of the course, the student must be able to:

- Understand the quantum theory of electromagnetic radiation
- Understand the different effects of light-matter interaction
- Understand the differences of classical and quantum properties of light
- Use of Python toolbox to simulate open quantum systems

• Understand modern applications of quantum optics in quantum communication, quantum metrology and quantum computation

Teaching methods Exercises (weekly).

Assessment methods

written exam

Resources

Moodle Link

• https://go.epfl.ch/PHYS-453