PHYS-302 Biophysics : physics of biological systems

Pahi Sahand Jamal

EPFL

positions

Kalli Salialiu Jaliai				
Cursus	Sem.	Туре	Language of	English
Biomedical technologies minor	Н	Opt.	teaching Credits Session Semester Exam	Linglion
Ingphys	MA1, MA3	Opt.		4 Winter Fall During the semester 120h
Life Sciences Engineering	MA1, MA3	Opt.		
Mechanical engineering	MA1, MA3	Opt.		
Physicien	MA1, MA3	Opt.	Workload	
Physics of living systems minor	Н	Opt.	Weeks	14
Physics		Opt.	Hours Lecture	4 weekly 2 weekly
			Exercises Number of	2 weekly

Summary

Understand and use the results and methods of population genetics, population dynamics, network theory, and reaction network dynamics to analyze and predict the behavior of living systems

Content

Master equation, population genetics, finite populations, genetic drift, stochastic modeling, fluctuating environments

Introduction to networks, dynamics on networks

Biochemical reaction networks, Michaelis-Menten kinetics, cooperativity, autoregulation, feedback and bistability, switches, oscillations, feed-forward loop network motif, stochastic gene expression, causes and consequences of stochastic gene expression, robustness

Keywords

physics of living systems, population genetics, population dynamics, genetic networks, systems biology

Learning Prerequisites

Recommended courses

physics, mathematics, and biology at the introductory university level

Teaching methods

Flipped classroom, lectures (online and in person), in-person discussions, discussions of research articles, problem solving

Expected student activities

attend lectures, watch online lectures, complete exercises, read and present recent papers in the field

Assessment methods

40% homework, 60% final project

Supervision

Office hours	Yes
Assistants	Yes

Resources

Moodle Link

• https://go.epfl.ch/PHYS-302