

PHYS-415	Particle physics I				
	Marchevski Radoslav				
Cursus		Sem.	Type	Language of	English
Ingphys		MA1, MA3	Opt.	teaching	Liigiisii
Physicien		MA1, MA3	Opt.	Credits	4
			ор	Session	Winter
				Semester	Fall
				Exam	Oral
				Workload	120h
				Weeks	14
				Hours	4 weekly
				Lecture	2 weekly
				Exercises	2 weekly
				Number of positions	

Summary

Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.

Content

Introduction:

The Standard Model, a step toward Grand Unification.

Particle detection, accelerators.

Relativity, Klein-Gordon and Dirac equations.

Properties of particles:

Mass, charge, lifetime, spin, magnetic moment,...

Symmetries, conservation laws, and the quark model:

Invariance under space translation and rotation, parity, time reversal and charge conjugation. Violation of parity and CP, CPT theorem. Isospin.

QED:

Introduction to QED. Feynman rules. The form factors.

Tests of QED:

Electron-positron annihilation. Electron-proton scattering. Deep inelastic scattering and proton substructure. Electron and muon magnetic moments.

Learning Prerequisites

Recommended courses

Nuclear and Particle Physics I and II, Quantum mechanics I and II

Learning Outcomes

By the end of the course, the student must be able to:

• Analyze sub-microscopical phenomena

Teaching methods

Ex cathedra and exercises in class

Assessment methods

Particle physics I Page 1 / 2

oral exam (100%)

Supervision

Assistants Yes

Resources

Bibliography

Mark Thomson, "Modern Particle Physics" (2013)

Ressources en bibliothèque

• Mark Thomson, "Modern Particle Physics" (2013)

Websites

• http://pdg.lbl.gov/

Moodle Link

• https://go.epfl.ch/PHYS-415

Particle physics I Page 2 / 2