PHYS-428 Relativity and cosmology II

	Gorbenko Victor				
Cursus		Sem.	Туре	l anguage of	English
Ingphys		MA2, MA4	Opt.	teaching	English
Physicien		MA2, MA4	Opt.	Credits Session	6 Summer
				Semester	Spring
				Exam	Written
				Workload	180h
				Weeks	14
				Hours	4 weekly
				Lecture	2 weekly
				Exercises	2 weekly

Summary

This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory and discusses major physical processes in the early Universe.

Content

- Basic facts about the Universe
- Red shift and Hubble expansion
- Homogeneous spaces and Friedman-Robertson-Walker metric
- Open, closed and spatially flat universe
- Matter dominated and radiation dominated Universe
- Cosmological constant and accelerated universe expansion
- Physical processes in the early Universe and the cosmic microwave background radiation
- Inflationary cosmology

Keywords

- 1. Expansion of the Universe
- 2. Hot Big Bang theory
- 3. Dark matter
- 4. Accelerated expansion of the Universe
- 5. Inflation
- 6. Cosmic Microwave background radiation

Learning Prerequisites

Required courses Analytical Mechanics Classical Electrodynamics Statistical Physics I Relativity and Cosmology I

Recommended courses Quantum Physics III Relativistic quantum fields I Nuclear and Particle Physics I, II

Learning Outcomes

Number of positions

By the end of the course, the student must be able to:

- Estimate the lifetime of the Universe, knowing the cosmological parameters
- Formulate the main observational evidence for the hot Big Bang theory
- Describe basic cosmological epochs

Transversal skills

• Use a work methodology appropriate to the task.

Teaching methods

Ex cathedra and exercises

Assessment methods

final written exam 100%

Supervision

Office hours Yes

Resources

Bibliography

- 1. L. Landau, Lifshitz, "The classical Theory of Fields"
- 2. S. Weinberg, "Gravitation and Cosmology"
- 3. E. Kolb, M. Turner, "The Early Universe"

Ressources en bibliothèque

- Gravitation and Cosmology / Weinberg
- The Early Universe / Kolb
- The classical Theory of Fields / Landau

Moodle Link

• https://go.epfl.ch/PHYS-428