Vaudenay Serge				
Cursus	Sem.	Туре	Language of	English
Communication systems minor	Н	Opt.	teaching	Linglish
Computer and Communication Sciences		Opt.	Credits	8 Winter Fall Written 240h 14 6 weekly 4 weekly 2 weekly
Computer science minor	Н	Opt.	Session Semester	
Computer science	MA1, MA3	Obl.	Exam	
Cyber security minor	Н	Opt.	Workload Weeks	
Cybersecurity	MA1, MA3	Obl.	Hours	
Data Science	MA1, MA3	Opt.	Lecture	
Financial engineering	MA1, MA3	Opt.	Exercises Number of	
Minor in Quantum Science and Engineering	Н	Opt.	positions	
Quantum Science and Engineering	MA1, MA3	Opt.		
SC master EPFL	MA1, MA3	Obl.		

Summary

This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how they work and sketch how they can be implemented.

Content

- 1. Ancient cryptography: Vigenère, Enigma, Vernam cipher, Shannon theory
- 2. Diffie-Hellman cryptography: algebra, Diffie-Hellman, ElGamal
- 3. **RSA cryptography**: number theory, RSA, factoring
- 4. Elliptic curve cryptography: elliptic curves over a finite field, ECDH, ECIES, pairing
- 5. Symmetric encryption: block ciphers, stream ciphers, exhaustive search
- 6. **Integrity and authentication**: hashing, MAC, birthday paradox
- 7. Public-key cryptography: cryptosystem, digital signature, post-quantum cryptography
- 8. Trust establishment: password-based cryptography, secure communication, trust setups
- 9. Case studies: WiFI, bitcoin, mobile telephony, WhatsApp, EMV, Bluetooth, biometric passport, TLS

Keywords

cryptography, encryption, secure communication

Learning Prerequisites

Required courses

- Algebra (MATH-310)
- Probabilities and statistics (MATH-232)
- Algorithms (CS-250)

Recommended courses

• Computer security (COM-301)

Important concepts to start the course

- Mathematical reasoning
- Probabilities
- Algebra, arithmetics
- Algorithmics

Learning Outcomes

By the end of the course, the student must be able to:

- Choose the appropriate cryptographic primitive in a security infrastructure
- Judge the strength of existing standards
- Assess / Evaluate the security based on key length
- Implement algorithms manipulating big numbers and use number theory
- Use algebra and probability theory to analyze cryptographic algorithms
- · Identify the techniques to secure the communication and establish trust

Teaching methods

ex-cathedra

Expected student activities

- active participation during the course
- take notes during the course
- do the exercises during the exercise sessions
- complete the regular tests and homework
- read the material from the course
- self-train using the provided material
- do the midterm exam and final exam

Assessment methods

Mandatory continuous evaluation:

- homework (30%)
- regular graded tests (30%)
- midterm exam (40%)

Final exam averaged (same weight) with the continuous evaluation, but with final grade between final_exam-1 and final_exam+1.

Supervision

Forum	Yes
Others	Lecturers and assistants are available upon appointment.

Resources

Bibliography

- Communication security: an introduction to cryptography. Serge Vaudenay. Springer 2004.
- A computational introduction to number theory and algebra. Victor Shoup. Cambridge University Press

2005.

Ressources en bibliothèque

- A computational introduction to number theory and algebra / Shoup
- Communication security / Vaudenay

Websites

https://lasec.epfl.ch/teaching.php

Moodle Link

• https://go.epfl.ch/COM-401

Videos

• https://mediaspace.epfl.ch/channel/COM-401+Cryptography+and+security

Prerequisite for

- Advanced cryptography (COM-501)
- Student seminar: security protocols and applications (COM-506)