Statistical inference and machine learning

Kiyoyoob Nogor

EPFL

Number of positions

Kiyavash Negar				
Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA1, MA3	Opt.	teaching	Linghom
Financial engineering	MA1, MA3	Opt.	Credits Session	4 Winter Fall Written 120h
Management of technology		Opt.	Semester	
Management, Technology and Entrepreneurship minor	Н	Opt.	Exam Workload	
Managmt, tech et entr.	MA1, MA3	Opt.	Weeks	14
Systems Engineering minor	Н	Opt.	Hours Lecture	4 weekly 2 weekly
			Exercises	2 weekly

Summary

MGT-448

This course aims to provide graduate students a thorough grounding in the methods, theory, mathematics and algorithms needed to do research and applications in machine learning. The course covers topics from machine learning, classical statistics, and data mining.

Content

List of topics:

• General Introduction

• Supervised Learning, Discriminative Algorithms:

Supervised Learning Concept, Linear Regression, Maximum Likelihood, Normal Equation Gradient Descent, Stochastic Gradient, SVRG.

Linear Classification, Logistic Regression, Newton Method,

Generative Algorithms: Multivariate Normal, Linear Discriminant Analysis Naive Bayes, Laplacian Smoothing Multiclass Classification, K-NN Multi-class Fisher Discriminant Analysis, Multinomial Regression Support Vector Machines and Kernel Methods: Intuition, Geometric Margins, Optimal Margin Classifier Lagrangian Duality, Soft-margin, Loss function, Stochastic Subgradient Method. Kernel, SMO algorithm, Coordinate Gradient Descent.
Kernel PCA, Kernel Logistic Regression, Kernel Ridge Regression, Multiclass SVM
Unsupervised Learning: PCA, Mixture Medols, Bayesian Graphical Medols.

PCA, Mixture Models, Bayesian Graphical Models

Power Method, Ojaâ##s algorithm, EM Algorithm, Variational Inference Matrix Factorization/Completion

• Regularization and Model Selection:

Cross Validation, Hill Climbing, Bayesian Optimization Bayesian Regression, Bayesian Logistic Regression Forward and Backward Regression, Lasso, elastic-net. Proximal Gradient, Prox-SVRG. Coordinate Proximal Gradient, Pathwise Coordinate Descent

 Decision Tree and Random Forest: Entropy, Building Tree

Bagging features, Bagging Samples, Random Forest Adaboost, Gradient Tree Boosting

Neural Network:

Concept; Deep Neural Network; Backpropagation Convolutional Neural Network;

Keywords

Supervised and unsupervised learning, Model selection, Generative models.

Learning Prerequisites

Required courses A course in basic probability theory.

Recommended courses linear algebra and statistics.

Important concepts to start the course Students should be familiar with basic concepts of probability theory, calculus and linear algebra.

Learning Outcomes

By the end of the course, the student must be able to:

- Formalize Formulate supervised and unsupervised learning problems and apply it to data.
- Understand and apply generative models.
- Understand and train basic neural networks and apply them to data.

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Classical formal teaching interlaced with practical exercices.

Expected student activities

Active participation in exercise sessions is essential.

Assessment methods

30% Homework20% Midterm project50% Final project

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Moodle Link

• https://go.epfl.ch/MGT-448