

QUANT-400 Introduction to quantum science and technology

Charbon Edoardo, Holmes Zoë, Ionescu Mihai Adrian, Macris Nicolas, Scarlino Pasquale

positions

Cursus	Sem.	Туре	Language of	English
Minor in Quantum Science and Engineering	Н	Opt.	teaching	English
Quantum Science and Engineering	MA1, MA3	Obl.	Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Number of	5 Winter Fall Written 150h 14 4 weekly 3 weekly 1 weekly

Summary

A broad view of the diverse aspects of the field is provided: quantum physics, communication, quantum computation, simulation of physical systems, physics of qubit platforms, hardware technologies. Students will grasp the field as a whole and better orient themselves on specialized topics.

Content

Introduction (2 weeks):

- Overview of the frontiers of quantum science, technology and applications.
- Introduction to qubits, quantum states, measurements, evolution. Axiomatic formulation.

• Illustration with two level systems, Bloch sphere, Spin, its manipulation in magnetic fields. Heisenberg and spin Hamiltonians, elementary gates. Coherence times.

Communication, information and computation (5 weeks)

- Quantum communication: QKD, dense coding, teleportation.
- Circuit model of computation.
- Introduction to algorithms (Deutsch-Josza, Simon or Shor, QAOA)
- Quantum simulation of physical systems (VQE, hybrid quantum-classical approaches)

Physics of qubit platforms (3 weeks):

- Introduction to qubit platforms
- superconducting qubits
- trapped ions, spin qubits (time permitting)

Hardware technologies and applications (4 weeks):

- Single electron transistors (SET) and fabrication technologies
- Single electron memories (SEM)
- Hybrid CMOS-SET for analog and sensing functions at cryogenic temperatures
- The quantum stack, Quantum-classical interfaces
- From fidelity to electronic circuit specifications
- Cryogenic electronics to control quantum systems

Keywords

quantum bit, qubit, quantum information, quantum computation, algorithms, spin, quantum sensing, metrology, NISQ devices, cryogenic electronics, quantum-classical interface.

Learning Prerequisites

Required courses

- Linear Algebra
- Elementary physics classes

Learning Outcomes

By the end of the course, the student must be able to:

- Describe various frontier topics in quantum science and technology.
- Illustrate quantum principles for simple systems
- Recognize quantum computation models
- Explain the simplest primitive communication protocols
- Present current hardware technologies and their applications
- Design electronics for quantum systems

Teaching methods

- Ex-cathedra lectures
- Exercices session

Assessment methods

Written exam

Supervision

Assistants	Yes
Forum	Yes

Resources

Bibliography

- The physics of information technology / Gershenfeld
- Quantum computation and quantum information / Nielsen and Chuang
- Quantum computer science: an introduction /Mermin
- Bharti, K., et al., 2022. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004.

Ressources en bibliothèque

- Quantum computation and quantum information / Nielsen and Chuang
- The physics of information technology / Gershenfeld
- Quantum computer science: an introduction /Mermin
- Bharti, K., et al., 2022. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004

Moodle Link

• https://go.epfl.ch/QUANT-400

Prerequisite for

Classes in Quantum Science and Engineering