Bonella Sara				
Cursus	Sem.	Туре	Language of	English
Chemistry and Chemical Engineering		Opt.	teaching	Linglish
Chimiste	MA1, MA3	Opt.	Credits	4 Winter Fall Oral 120h 14
Computational science and Engineering	MA1, MA3	Opt.	Dpt. Exam Workload	
Minor in Quantum Science and Engineering	Н	Opt.		
Quantum Science and Engineering	MA1, MA3	Opt.		
			Hours	3 weekly

Summary

CH-452

This course will discuss the main methods for the simulation of quantum time dependent properties for molecular systems. Basic notions of density functional theory will be covered. An introduction to simulating nuclear quantum effects for adiabatic and non adiabatic dynamics will be provided.

Content

Short repetition

Introduction to classical molecular dynamics simulations for molecular systems Density Functional theory, basic theorems

Advanced topics

Time dependent Schroedinger equation for a system of nuclei and electrons. The coupled channels equation Integration methods for first principles molecular dynamics with classical ions. Adiabatic and non adiabatic molecular dynamics: approximate methods for numerical solution Nuclear quantum effects.

Keywords

simulation and modelling of materials quantum systems

Learning Prerequisites

Required courses Basic quantum mechanics

Learning Outcomes

By the end of the course, the student must be able to:

- Prove the basic theorems of DFT
- Interpret input and output of typical community codes for classical and ab initio molecular dynamics
- Discuss the evolution of the different electronic structure methods for electronic excited states
- Discuss basic equations for quantum evolution of nuclei and electrons

Transversal skills

Computational methods in molecular quantum mechanics

2 weekly

1 weekly

Lecture

Number of positions

Exercises

- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Summarize an article or a technical report.

Expected student activities

Weakly summary (three point bullet list) of lecture material + question Development (in team) of small research project, computational or based on literature Oral presentation of research project

Assessment methods

1/4 Evaluation of weakly summaries1/2 Development and presentation of research project1/4 Oral exam on course topics

Resources

Moodle Link

• https://go.epfl.ch/CH-452