

EE-567 Semiconductor devices II

Ionescu Mihai Adrian, Kis Andras

Cursus	Sem.	Type
Electrical and Electronical Engineering	MA2, MA4	Opt.
Minor in Quantum Science and Engineering	Е	Opt.
Quantum Science and Engineering	MA2, MA4	Opt.

Language of	English
teaching	
Credits	4
Session	Summer
Semester	Spring
Exam	Written
Workload	120h
Weeks	14
Hours	4 weekly
Lecture	2 weekly
Exercises	2 weekly
Number of	
positions	

Summary

Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts. Remark: at least 5 students should be enrolled for the course to be given

Content

- 1. Advanced nm-channel CMOS devices (FinFET, UTB SOI, 2D materials, 3D integration, LiM)
- 2. Steep slope devices, energy efficiency (Tunnel FETs, negative-capacitance devices)
- 3. Neuromorphic devices and circuit architectures
- 4. 2D materials introduction and materials aspects
- 5. FETs with 2D materials switching, contact resistance, trap states
- 6. Optoelectronics with 2D materials
- 7. Emerging, post-CMOS concepts: valleytronics, spintronics, excitonic devices

Keywords

Nanoelectronics, nanodevices, 2D materials, CMOS and post-CMOS concepts

Learning Prerequisites

Required courses Semiconductor devices I General Physics 4

Resources

Moodle Link

• https://go.epfl.ch/EE-567

Semiconductor devices II Page 1 / 1