

MICRO-429 **Metrology practicals**

Bruschini Claudio, Charbon Edoardo, Fantner Georg

Cursus	Sem.	Type
Microtechnics	MA2, MA4	Opt.
Minor in Imaging	Е	Opt.
Quantum Science and Engineering	MA2, MA4	Opt.

Language of teaching	English
Credits	2
Withdrawal	Unauthorized
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	60h
Weeks	14
Hours	2 weekly
Practical	2 weekly
work	
Number of	
positions	

Remark

A suivre uniquement en parallèle de MICRO-428

Summary

The student will get familiar with the techniques learnt in class (MICRO-428) and will put them to practice with experiments in the laboratory. There will be a practical training for each theme covered in class; the students will also learn good practices during measurements (lab notebook included).

Content

The topics covered by the course are summarized as follows:

- Introduction
- Dark count rate (DCR) and afterpulsing statistics in photon-counting device
- Sensitivity in photon-counting devices
- Timing jitter measurements in single-photon detectors
- Scanning electron microscopy
- Atomic force microscope

Keywords

SPAD, TCSPC, PDP, PDE, SPTR, CTR, DCR, AFM, SEM, optical microscopy

Learning Prerequisites

Required courses

MICRO-428 Metrology

Recommended courses

Design of Experiments

Important concepts to start the course

Matlab for data read-out and processing

Learning Outcomes

Metrology practicals Page 1 / 2

By the end of the course, the student must be able to:

- Choose an appropriate measurement methodology
- Develop the understanding of measurement tools and instruments
- Design a measurement experiment
- Interpret measurement results
- Investigate issues related to the accuracy and precision

Transversal skills

· Demonstrate the capacity for critical thinking

Teaching methods

One introductory lecture followed by lab practicals in the second half of the semester.

Expected student activities

Mandatory advance preparation before each lab practical Experimentation and note taking/description (lab notebook) Interaction with the Lecturers and TAs

Assessment methods

Continuous assessment for each lab practical

Supervision

Office hours Yes Assistants Yes

Resources

Notes/Handbook

On Moodle: handouts of all practicals available after the Introductory lecture.

Moodle Link

• https://go.epfl.ch/MICRO-429

Metrology practicals Page 2 / 2