

Electromagnetic compatibility

Rachidi-Haeri Farhad

Cursus	Sem.	Type
Electrical and Electronical Engineering	MA2, MA4	Opt.
Energy Science and Technology	MA2, MA4	Opt.

English Language of teaching Credits Session Summer Semester Spring Exam During the semester Workload 60h Weeks 14 2 weekly Hours 2 weekly Lecture Number of positions

Summary

In this lecture, students will get the basic knowledge on electromagnetic compatibility.

Content

- 1. EMC concept: Source of EM disturbances, victims, coupling path. Incompatibility problems and hierarchy of responsibilities.
- **2. Coupling Modes :** Galvanic, inductive, capacitive, radiation. Calculation methods. Definition of and methods of measuring and calculating transfer impedance.
- **3. Low Frequency coupling models :** Inductive and capacitive coupling. Equivalent coupling circuit. Determination of mutual capacitance and inductance. Methods for reducing interferences. Shielded and twisted cables
- **4. Transmission line coupling models :** Transmission line parameters. Source term representation. Time-domain and frequency-domain solution of coupling equations. Coupling to shielded cables.
- 5. Electrosatic discharge: Causes, effects and protection methods.
- 6. EMC in electronic circuits: Grounding. Radiation of digital circuits. Protective measures
- **7. Shielding :** Perfect shield. Field penetration. Shielding effectiveness. Shielding materials. Static field shielding. Shielding continuity. Apertures.
- 8. EMC in telecommunications. Biological effects of electromagnetic fields.
- **9. Lightning electromagnetic effects :** Lightning phenomena. Different categories of lightning discharge. Cloud-to-ground lightning discharge. Direct and indirect effects of lightning.

Learning Prerequisites

Recommended courses

Electromagnetics I and II

Learning Outcomes

By the end of the course, the student must be able to:

- Identify and analyze sources of electromagnetic disturbances
- Identify the method of analysis of an EMC problem
- Be capable of analyzing electromagnetic interference problems
- Understand basic mitigating techniques in EMC
- Understand shielding mechanisms and electromagnetic coupling

Assessment methods

During the semester

Resources

Moodle Link

• https://go.epfl.ch/EE-576