

14

3 weekly 2 weekly

1 weekly

Weeks

Hours

Lecture

Exercises
Number of
positions

MSE-477	Nanomaterials				
	Tileli Vasiliki				
Cursus		Sem.	Type	Language of teaching	English
Chimiste		MA1, MA3	Opt.		
Materials Science and Engineering		MA1, MA3	Opt.	Credits	3
		, -		Session	Winter
				Semester	Fall
				Exam	During the semester
				Workload	90h

Summary

This course is an introduction to the concepts and associated relevant physics and materials science principles of what makes inorganic nanomaterials outperform their bulk counterparts. It covers their synthesis and characterization as well as the physical and chemical properties at the nanoscale.

Content

- 1. Emergence, definitions, challenges
- 2. Sythesis & characterization
- 3. Nano thermodynamic/thermal/mechanical properties
- 4. Nanoelectronics, nanooptics, and nanomagnetism
- 6. Nano for energy and nano for environment
- 7. Nanomedicine, nanotoxicology, and safety issues in nano

Keywords

nanomaterials, nanoscale

Learning Prerequisites

Required courses

Intoduction to Materials Science

Recommended courses

Crystallography Inorganic chemistry

Learning Outcomes

- · Contextualise physical properties of nanomaterials
- Choose synthesis and characterization method
- Choose the nanomaterial for a specific application

Teaching methods

Ex cathedra, videos, clickers

Assessment methods

Nanomaterials Page 1 / 2

Grouped project with presentation and written report and Final exam

Resources

Bibliography

- 1. Fundamentals of Nanotechnology, G.L. Hornyak, J.J. Moore, H.F. Tobbals & J. Dutta, CRC press, 2009
- 2. Nanostructures and Nanomaterials –Synthesis, Properties and Applications, C. Guozhong & W. Ying, World Scientific Publishing, 2nd edition, 2011

Ressources en bibliothèque

- Fundamentals of Nanotechnology / Hornyak
- Nanostructures and Nanomaterials Synthesis, Properties and Applications / Guozhong

Moodle Link

• https://go.epfl.ch/MSE-477

Nanomaterials Page 2 / 2