

CH-422 Catalyst design for synthesis

Hu Xile

Cursus	Sem.	Туре
Chimiste	MA1. MA3	Opt.

Language of **English** teaching Credits Session Winter Semester Fall Exam During the semester Workload 60h Weeks 14 Hours 2 weekly 2 weekly Lecture Number of positions

Summary

This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, olefin metathesis, cross-coupling).

Content

- Organometallic chemistry: revision of basic ideas including structure and bonding and the implications this has on reactivity of an organic ligand coordinated to a metal centre.
- A description of the reactions involved in homogeneous catalysis, with an emphasis on the essential features required to predict which type of reactions can take place.
- Hydrogenation
- Olefin metathesis
- Cross-coupling

Keywords

homogeneous catalysis, reaction mechanism, catalyst design, synthesis

Learning Prerequisites

Required courses

inorganic chemisrty organic chemistry organometallic chemistry

Recommended courses

homogeneous catalysis

Learning Outcomes

By the end of the course, the student must be able to:

- · Classify catalysts and different catalysed reactions
- Explore the molecular mechanisms of catalytic processes
- · Assess / Evaluate the ways that catalysts can be improved

• Design superior catalysts (in theory)

Teaching methods

Lecture course

Assessment methods

Written exams; one mid term and one final exam during the semester

Resources

Ressources en bibliothèque

• Encyclopedia of catalysis / Horváth

Notes/Handbook

Notes in Moodle

Moodle Link

• https://go.epfl.ch/CH-422