

CH-442 Photochemistry I

Moser Jacques-Edouard

Cursus	Sem.	Type
Chimiste	MA1, MA3	Opt.

Language of English teaching Credits Winter Session Semester Fall Exam Oral Workload 60h Weeks 14 2 weekly Hours 2 weekly Lecture Number of positions

Summary

This course presents the theoretical bases of electronic spectroscopy and molecular photophysics. The principles of the reactivity of excited states of molecules and solids under irradiation are detailled. The main classes of industrial and natural photochemical processes are described.

Content

1. Fundamentals

Introduction - Light absorption and reflection - Radiation and molecular orbitals - Photonics of solid materials.

2. Photophysical processes

Excited states deactivation pathways - Kinetics of radiative and nonradiative processes - Excimers and exciplexes - Intermolecular electronic energy transfer - Photosensitization.

3. Photochemical reactions

Photodissociation - Multiphoton processes - Photoinduced electron transfer - Pericyclic concerted reactions.

4. Organic synthetic reactions

Reactions of ethenes and aromatic compounds - Photo-chemical reactions of the carbonyl chromophore - Photo-oxygenation (singlet oxygen, superoxide anion).

5. Polymer and pigments photochemistry

Photopolymerization and cross-linking - Photodegradation and stabilization of polymers and pigments.

6. Natural photochemical processes

Light-induced atmospheric reactions - Natural photosynthesis - Mechanisms of vision.

Keywords

Electronic spectroscopy, Molecular photophysics, Photoinduced electron transfer, Organic photochemistry, Singlet oxygen, Polymer photochemistry, Natural photochemical processes

Learning Prerequisites

Required courses

Quantum mechanics and molecular spectroscopy

Recommended courses

Electronic spectroscopy

Learning Outcomes

Photochemistry I Page 1 / 2

By the end of the course, the student must be able to:

- · Formulate the macroscopic and quantum laws of the absorption of light by molecules and solids
- Describe the various deactivation processes of molecular excited states
- · Characterize the kinetics of deactivation processes and their role in the photochemical reactivity
- Quote the various types of photochemical reactions
- Explain the basic principles of the thermodynamics and kinetics of photoinduced electron transfer
- Describe the photochemical reactivity of ethenes and carbonyl compounds
- Discuss the properties and reactivity of singlet oxygen and ways to prepare it
- Express the principles of photopolymerization and polymer photodegradation and stabilization
- Represent the mechanisms of natural photochemical processes

Teaching methods

Ex-cathedra lectures with demonstrations in class

Expected student activities

Solving of examplary problems

Assessment methods

Final oral examination

Supervision

Office hours No
Assistants No
Forum No

Resources

Ressources en bibliothèque

- Photophysique et photochimie : des fondements aux applications / Delaire
- · Principles and applications of photochemistry / Wardle

Notes/Handbook

All copies of the slides are availbale in pdf format on the course's web pages

Websites

• https://www.epfl.ch/labs/gdp/teaching/pc1/

Photochemistry I Page 2 / 2