MSE-431 Physical chemistry of polymeric materials

Klok-Lermann Eva				
Cursus	Sem.	Туре	Language of	English
Chimiste	MA2, MA4	Opt.	teaching	Linghon
Ingchim.	MA2, MA4	Opt.	Credits	3
Materials Science and Engineering	MA2, MA4	Opt.	Session Semester	Summer Spring
			Exam	During the semester
			Workload	90h
			Weeks	14
			Hours	3 weekly
			Lecture	2 weekly
			Exercises	1 weekly
			Number of positions	
			poonono	

Summary

The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristics of a polymer from its chemical structure and molecular architecture.

Content

- Introduction
- Dilute solutions
- Polymer structure in solution
- Molecular weight determination
- · Concentrated solutions and phase behavior
- The amorphous state
- The crystalline state
- The glass-rubber transition
- Rubber elasticity
- Viscoelastic properties

During the course concepts, methods and models are discussed in the field of the above mentioned subjects.

Keywords

dilute and concentrated solutions glass transition rubber elasticity viscoelastic behaviour

Learning Prerequisites

Recommended courses General chemistry, Inorganic chemistry, organic and polymer chemistry

Important concepts to start the course basic knowledge of thermodynamics

elementary laws of chemistry and physics

Learning Outcomes

By the end of the course, the student must be able to:

- Predict polymer characteristics based on chemical structure and molecular architecture
- Discuss dilute and concetrated solution and bulk behaviour of synthetic polymers
- Use insights from physicochemical experiments to discuss the composition and architecture of polymers
- Discuss dilute and concentrated solutions and bulk behaviour of synthetic polymers

Transversal skills

- Use a work methodology appropriate to the task.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods

Lectures and exercises

Assessment methods

written, in the form of a literature study the written report has to be submitted at least, Friday of the first week after the end of the teaching.

Supervision

Office hours	No
Assistants	Yes
Forum	Yes
Others	via Moodle

Resources

Bibliography

 T.P. Lodge, P.C. Hiemenz, Polymer Chemistry, 3rd edition, CRC Press 2020 e-book: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2512676 hardcopies are available at the liberary
L.H. Sperling, Introduction of Physical Polymer Science
4th edition, Wiley Interscience 2005

Ressources en bibliothèque

- Polymer Chemistry / Hiemenz
- Introduction to Physical Polymer Science / Sperling

Notes/Handbook Slides and notes are avaiable on Moodle

Moodle Link

https://go.epfl.ch/MSE-431