COM-418 Computers and music

Cursus	Sem.	Type
Computer science	MA2, MA4	Opt.
Data Science	MA2, MA4	Opt.
Digital Humanities	MA2, MA4	Opt.
SC master EPFL	MA2, MA4	Opt.

Language of teaching	English
Credits	6
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	180h
Weeks	14
Hours	3 weekly
Lecture	2 weekly
Exercises	1 weekly
Number of	
positions	

Remark

pas donné en 2023-24

Summary

In this class we will explore some of the fundamental ways in which the pervasiveness of digital devices has completely revolutionized the world of music in the last 40 years, both from the point of view of production and recording, and from the point of view of listening and distribution.

Content

- review of digital signal processing: discrete-time signals, spectral analysis, digital filters
- audio measurement standards; A/D and D/A converters; oversampling; sigma-delta
- audio compression; the MP3 standard
- digital synthesizers: oscillators, FM synthesis, samplers
- fundamentals of time-frequency analysis; pitch shifting; time stretching; vocoder
- music production; equalization, compression, reverb
- notions of balancing and mastering; the MIDI and VST standards
- nonlinear system modeling
- · deep learning in audio processing

Keywords

DSP, computer music, digital audio

Learning Prerequisites

Required courses

digital signal processing, programming

Recommended courses

signals and systems, Python, C++

Important concepts to start the course

Digital signals, filters, spectral analysis

Computers and music Page 1 / 2

Learning Outcomes

By the end of the course, the student must be able to:

- Describe the fundamental techniques in digital audio recording and production
- Be able to avoid unwanted artifacts in sound recording and compression
- Recognize the typical acoustic footprint of classic synthesizers and audio effects
- Write working signal processing code to synthesize sounds and process audio
- Write code that interfaces to existing equipment via industry-standard protocols

Transversal skills

- Access and evaluate appropriate sources of information.
- Summarize an article or a technical report.
- Write a scientific or technical report.
- Demonstrate a capacity for creativity.

Teaching methods

lectures

Expected student activities

- Attending lectures
- Writing code samples
- Solving exercises
- Read technical papers

Assessment methods

mini projects and/or final exam

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Bibliography

TBD

Notes/Handbook

handouts, papers and code samples

Moodle Link

• https://go.epfl.ch/COM-418

Computers and music Page 2 / 2