CS-552 Modern natural language processing

Bosselut Antoine			
Cursus	Sem.	Type	Languag
Computer and Communication Sciences		Opt.	teaching
Computer science	MA2, MA4	Opt.	Credits
Data Science	MA2, MA4	Obl.	Withdray Session
Data science minor	E	Opt.	Semeste
Digital Humanities	MA2, MA4	Opt.	Exam
Life Sciences Engineering	MA2, MA4	Opt.	Workloa
SC master EPFL	MA2, MA4	Opt.	Weeks Hours
			Lectu

Language of	English		
teaching			
Credits	8		
Withdrawal	Unauthorized		
Session	Summer		
Semester	Spring		
Exam	During the		
	semester		
Workload	240h		
Weeks	14		
Hours	6 weekly		
Lecture	3 weekly		
Exercises	2 weekly		
Project	1 weekly		
Number of			
positions			
It is not allowed to withdraw from this subject after the			

registration deadline.

Summary

Natural language processing is ubiquitous in modern intelligent technologies, serving as a foundation for language translators, virtual assistants, search engines, and many more. In this course, students will learn algorithmic tools for tackling problems in modern NLP.

Content

This course includes lectures, assignments, a paper review and a project. In lectures, we will cover the foundations of modern methods for natural language processing, such as word embeddings, recurrent neural networks, transformers, pretraining, and how they can be applied to important tasks in the field, such as machine translation and text classification. We will also cover issues with these state-of-the-art approaches (such as robustness, interpretability, sensitivity), identify their failure modes in different NLP applications, and discuss analysis and mitigation techniques for these issues.

In assignments, students will be evaluated on their ability to implement methods learned in class on closed-form problems developed by the course staff. In their project, students will be expected to apply techniques learned in lecture to an open problem of their choosing. They will formulate the problem as an NLP task, propose a suitable evaluation to measure their progress, develop a model to solve the task, and provide analysis of the strengths and weaknesses of their method.

This course is of interest to MS / PhD student interested in modern methods and issues in natural language processing, both from a research and applied perspective. Senior undergraduate students will be eligible upon petition to the course instructor.

Learning Prerequisites

Recommended courses

- CS-233a or CS-233b Introduction to machine learning
- CS-433 Machine learning

Important concepts to start the course

- Python programming

- Probability and Statistics
- Linear Algebra
- Machine Learning concepts

Learning Outcomes

By the end of the course, the student must be able to:

- Define basic problems and tasks in natural language processing (e.g., machine translation, summarization, text classification, language generation, sequence labeling, information extraction, question answering)
- Implement common modern approaches for tackling NLP problems and tasks (embeddings, recurrent neural models, attentive neural models) and how to train them
- Understand failure modes of these models and learning algorithms (e.g., robustness, interpretability/explainability, bias, evaluation)
- Review academic research papers and understand their contributions, strengths, and weaknesses according to the principles learned in lecture
- Complete a project that applies these algorithms to a real-world NLP problem, where they will define a task, evaluation, model implementation, and analyze the shortcomings of their approach

Teaching methods

- Lectures
- · Lab sessions
- Paper reading
- Course project

Expected student activities

- · Attend lectures and participate in class
- Complete homework assignments
- Complete a review of a research paper of their choosing published at an NLP conference over the last 5 years
- Complete a project of their choosing (agreed upon with course supervisor): complete a project proposal outlining topic and evaluation plan; submit two project milestones; submit final project report; present project findings to committee of course instructor and TAs.

Assessment methods

- Assignments (40%)
- Group Project (60%)

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Moodle Link

• https://go.epfl.ch/CS-552