CH-250	Mathematical methods in chemistry				
	Lorenz Ulrich, Vanicek Jiri				
Cursus		Sem.	Туре	Languag	
Chemistry and chemical engineering		BA4	Obl.	teaching	
HES - CGC		E	Obl.	Credits	

EPFL

Language of teaching	English	
Credits	4	
Session	Summer	
Semester	Spring	
Exam	During the	
	semester	
Workload	120h	
Weeks	14	
Hours	4 weekly	
Lecture	2 weekly	
Exercises	2 weekly	
Number of		
positions		

Summary

This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Fourier series and their use for solving ordinary and partial differential equations in chemistry & c.e.

Content

Part I Molecular symmetry and point groups

Group theory Representations of groups, the Great Orthogonality Theorem, character tables Group theory and quantum mechanics, applications to molecular orbital theory and normal modes of vibration *Part II* Laplace transform, convolution, and solution of ordinary differential equations

Fourier series, separation of variables, and solution of partial differential equations Applications of integral transforms in chemical kinetics, chemical engineering, and physical chemistry

Assessment methods

Part I (Lorenz): midterm exam 100% Part II (Vanicek): homeworks 30% + midterm exam 70% The points from the two parts are combined to form the final grade.

Resources

Bibliography

1. Cotton, F. A. Chemical Applications of Group Theory. (John Wiley & Sons, 1990).

2. Walton, P. H. Beginning Group Theory for Chemistry. (Oxford University Press, 1998).

3. P. Dyke, An introduction to Laplace transforms and Fourier series, Springer, 2014.

Ressources en bibliothèque

• An introduction to Laplace transforms and Fourier series / Dyke

- Chemical applications of group theory / Cotton
- Beginning group theory for chemistry / Walton

Références suggérées par la bibliothèque

Moodle Link

• https://go.epfl.ch/CH-250