

ChE-408 Process intensification and green chemistry

	Randall Harvey		
Cursus		Sem.	Type
Ingchim.		MA2, MA4	Opt.
Minor in Engineering for sustainability		Е	Opt.

Language of teaching	English
Credits	3
Session	Summer
Semester	Spring
Exam	Written
Workload	90h
Weeks	14
Hours	3 weekly
Lecture	2 weekly
Exercises	1 weekly
Number of positions	

Summary

The first part of the course (~20%) is devoted to green chemistry and life cycle assessment. The remainder focuses on process intensification (fundamentals, detailed description of a few selected technologies, with a special focus on microreactors). Examples and exercises are included.

Content

Elements of Green Chemistry

Survey of the chemical industry; green chemistry basics; green metrics (atom economy, reaction mass efficiency, atom efficiency, effective mass yield, carbon efficiency, process mass intensity, energy intensity); industrial examples (phenol and Carbaryl production); green engineering principles

Essentials of Life Cycle Assessment

LCA aims and methodology; LCA metrics (impact categories); example: dimethyl carbonate production

Process Intensification

General principles and benefits; description of selected process intensification technologies (rotating packed beds, thin-film and rotor-stator spinning-disc reactors, oscillatory baffled reactors / crystallizers); moving from batch to continuous

Miniaturization

Characteristic process times; coupling of physico-chemical phenomena; effect of scale on process parameters

Effect of Mixing on Chemical Reactions

Macro-, meso- and micro-mixing; segregation; effect of total segregation on reactor performance; effect of partial segregation on reactor performance and selectivity; experimental mixing time characterization via physical and chemical methods

Mixing in Microchannels

Flow regimes in microchannels; mixing by pure diffusion; mixing time for laminar mixing in a shear field

Microreactors

Overview and benefits; passive micromixers (parallel lamination, serial lamination, chaotic mixers and segmented flow): flow regimes, mixing principles & examples; active micromixers (pressure disturbance, electrokinetic); commercial systems; industrial examples

RTD in microreactors

Microchannels; fixed-beds; static mixers; coiled tubes and flow inverters; segmented flow

Heat management in micro- and milli-reactors

Heat transfer in various geometries; thermal sensitivity; multipoint injection

Keywords

Green chemistry and engineering, life cycle assessment, process intensification, micro-structured reactors

Learning Prerequisites

Required courses

Transport phenomena
Chemical kinetics
Thermodynamics
Chemical reaction engineering
Thermal safety of chemical processes
Separation processes

Learning Outcomes

By the end of the course, the student must be able to:

- Estimate the "greenness" of a chemical process using the appropriate criteria and metrics
- Choose the best technology for carrying out a chemical reaction based on the relevant physico-chemical, economical and ecological criteria
- · Design intensified processes with enhanced performance and sustainability
- Assess / Evaluate the impact of various technologies and operating conditions on key process factors such as heat transfer, mass transfer, mixing time and residence time distribution
- Describe the influence of micromixing on reactor performance and product distribution in homogeneous systems.
- Compute the residence time distribution, heat transfer performance and mixing time in micro-structured devices
- Design thermally safe micro- or milli-flow processes for highly exothermic reactions

Teaching methods

ex-cathedra with integrated exercise sessions

Expected student activities

Take notes during lectures
Participate to exercise sessions

Assessment methods

One final exam (written)

Resources

Bibliography

- •Hessel, V., A. Renken, J.C. Schouten and J.-I. Yoshida (eds.). Micro Process Engineering—A Comprehensive Handbook. 2009. Wiley-VCH.
- •Poux, M., P. Cognet and C. Gourdon. Green Process Engineering

From Concepts to Industrial Applications. 2015. CRC Press.

- •Boodhoo, K. and A. Harvey. Process Intensification for Green Chemistry: Engineering Solutions for Sustainable Chemical Processing. 2013. John Wiley & Sons Inc.
- •Kashid, M., A. Renken and L. Kiwi-Minsker. Microstructured Devices for Chemical Processing. 2015. Wiley-VCH.
- •Poux, M., P. Cognet and C. Gourdon. Green Process Engineering. 2015. CRC Press.
- •Hessel, V., Kralisch, D. and N. Kockmann. Novel Process Windows, 2015. Wiley.
- •Cavani, F., G. Centi, S. Perathoner, F. Trifiro, Sustainable Industrial Processes. Sustainable Industrial Chemistry, 2009, Wiley-VCH.

Ressources en bibliothèque

- Process intensification for green chemistry / Boodhoo
- Sustainable industrial processes / Cavani
- Novel process windows / Hessel
- Micro process engineering / Hessel
- Microstructured devices for chemical processing / Kashid

• Green process engineering / Poux

Notes/Handbook Slides in moodle

Moodle Link

• https://go.epfl.ch/ChE-408