MICRO-420 Selected topics in advanced optics

Martin Olivier				
Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA1, MA3	Opt.	teaching Credits	Linglish
Microtechnics	MA1, MA3	Opt.		3 Winter Fall
Photonics minor	Н	Opt.	Semester	
Photonics		Opt.	Exam Workload	Oral 90h
			Weeks Hours	14 3 weekly

Summary

This course proposes a selection of different facets of modern optics and photonics.

Content

- Summary of fundamental optics (ray optics, Maxwell's equations, wave optics and polarization optics)
- Material properties and optical constants
- Light scattering
- Optics of metals and plasmoncis
- Gratings, stratified media and photonic crystals
- Metamaterials and metasurfaces
- Simple Matlab codes do study problems related to the previous topics

Keywords

Maxwell's equations, optics, photonics, polarization, material constants, dispersion, light scattering, Mie scattering, plasmonics, gratings, photonic crystals, metamaterials, metasurfaces.

Learning Prerequisites

Recommended courses

General knowledge of fundamental optics, e.g. courses Ingénierie Optique

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze an optics problem based on the laws of optics and electromagnetics
- Develop a model for this problem
- Synthesize the properties of different fundamental optical phenomena
- Elaborate a deep understanding of the underlying phenomena
- Model an optics problem using Matlab
- Explore an optical parameter range using Matlab

Transversal skills

3 weekly

Lecture

Number of positions

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Set objectives and design an action plan to reach those objectives.
- Use both general and domain specific IT resources and tools

Teaching methods

Ex-cathedra and exercises on Matlab.

Expected student activities

Participate actively during the lecture and during the exercises with Matlab. Go through the solution of the exercises and seek feedback when necessary.

Assessment methods

Oral exam.

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Virtual desktop infrastructure (VDI) No

Bibliography

B.E.A. Saleh et M.C. Teich, "Fundamentals of photonics", 3rd Ed. Wiley (2019).
J.D. Jackson, "Classical electrodynamics", 3rd Ed. Wiley (1998).
J. Braat and P. Török, "Imaging optics", Cambridge University Press (2019).
A. Lipson, S.G. Lipson, and H. Lipson, "Optical physics", 4th Ed. Cambridge University Press (2011).
R.A. Chipman, W.-S.T. Lam and G. Young, "Polarized light and optical systems", CRC Press (2019).

Ressources en bibliothèque

- J. Braat and P. Török, "Imaging optics"
- R.A. Chipman, W.-S.T. Lam and G. Young, "Polarized light and optical systems"
- A. Lipson, S.G. Lipson, and H. Lipson, "Optical physics"
- J.D. Jackson, "Classical electrodynamics"
- B.E.A. Saleh et M.C. Teich, "Fundamentals of photonics"

Notes/Handbook

Provided on Moodle and during the lecture.

Moodle Link

• https://go.epfl.ch/MICRO-420