MICRO-431 Materials and technology of microfabrication

Gijs Martir	ius, Lehnert Thomas			
Cursus	Sem.	Туре	Language of	English
Microtechnics	MA1, MA3	Opt.	teaching	Linglish
			Credits	3
			Session	Winter
			Semester	Fall
			Exam	Oral
			Workload	90h
			Weeks	14
			Hours	3 weekly
			Lecture	2 weekly
			Exercises	1 weekly
			Number of	
			positions	

Summary

The student will learn procedures and applications of modern microfabrication technologies, as practiced in a clean room environment, in particular modern techniques that go beyond the classical steps of deposition, lithography and etching, with a focus on materials and multidisciplinarity.

Content

- 1. Elements of mainstream Si technology
- 2. Multilayer poly-Si micromachining
- 3. Glass microfabrication
- 4. Polymer microfabrication
- 5. Bonding and gluing technologies
- 6. Electroplating and the LIGA technique
- 7. Biosensor technologies
- 8. 3D printing or added manufacturing
- 9. Microfluidic bioseparation techniques
- 10. Magnetic labs-on-a chip

Learning Prerequisites

Recommended courses Microstructure fabrication technologies I.

Learning Outcomes

By the end of the course, the student must be able to:

- Choose for micro-engineered devices for a specific application.
- Design a process workflow for microfabrication.
- Differentiate the potential of different technologies for a given application.
- Identify the role of basic physical and chemical phenomena in modern miniaturized devices.
- Contextualise the use of microfabrication techniques for a given application.

Transversal skills

- Make an oral presentation.
- Summarize an article or a technical report.

- Access and evaluate appropriate sources of information.
- Keep appropriate documentation for group meetings.
- Communicate effectively, being understood, including across different languages and cultures.

Teaching methods

Lectures and personal study and presentation of relevant papers related to microfabrication by the student.

Assessment methods

Oral examination

Resources

Bibliography

M. Madou, Fundamentals of Microfabrication, 2nd edition, CRC Press, Boca Raton (2002). S. Franssila, Introduction to Microfabrication, 2nd edition, Wiley, Chicester UK (2010).

Ressources en bibliothèque

• Introduction to Microfabrication / Franssila

• Fundamentals of Microfabrication / Madou

Notes/Handbook Notes by the instructors.

Moodle Link

• https://go.epfl.ch/MICRO-431