

# PHYS-501 Nonlinear Optics

Roke Sylvie

| Cursus          | Sem.     | Type |
|-----------------|----------|------|
| Microtechnics   | MA1, MA3 | Opt. |
| Photonics minor | Н        | Opt. |
| Photonics       |          | Opt. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 4        |
| Session              | Winter   |
| Semester             | Fall     |
| Exam                 | Written  |
| Workload             | 120h     |
| Weeks                | 14       |
| Hours                | 4 weekly |
| Lecture              | 2 weekly |
| Exercises            | 2 weekly |
| Number of            |          |
| positions            |          |

#### **Summary**

Basic principles of optics

#### Content

A selection of the following topics will be offered:

- Introduction / overview of nonlinear optical phenomena
- Wave description of nonlinear optical processes
- The intensity dependence of the refractive index
- Spontenaous and stimulated light scattering processes
- Electrooptic and photorefractive effects
- · Optically induced damage
- Ultrafast Nonlinear processes

#### Keywords

nonlinear optics, second and third harmonic generation, optical fibers, solitons

# **Learning Prerequisites**

#### **Required courses**

During the course we will assume a basic understanding of physics and optics. As a work of reference one can use:

Grant R. Fowles, Introduction of Modern Optics

# **Recommended courses**

Basics of optics

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Assess / Evaluate nonlinear optical inetractions
- Theorize about Ithe type of possible interactions

Nonlinear Optics Page 1 / 2



- Analyze symmetry and related properties
- Solve the coupled wave equation
- Analyze second and third order effects
- Interpret electro-optic effects
- Interpret laser induced damage

#### **Assessment methods**

Written exam

#### Resources

# **Bibliography**

R. W. Boyd, Nonlinear Optics, Ed3

# Ressources en bibliothèque

• Nonlinear Optics / Boyd

# Notes/Handbook

Х

# **Moodle Link**

• https://go.epfl.ch/PHYS-501

Nonlinear Optics Page 2 / 2