14

3 weekly

2 weekly 1 weekly

Weeks

Hours

Lecture

Exercises Number of positions

EE-548 Audio engineering

1	incold	Homić
I	ISSAK	Herve

LISSERTIEIVE				
Cursus	Sem.	Туре	Language of	Fr
Electrical and Electronical Engineering	MA1, MA3	Opt.	teaching	Englis
Microtechnics	MA1, MA3	Opt.	Credits Session	3 Wi
			Semester	Fa
			Exam	Wr
			Workload	90h

Summary

This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker design, as well as room acoustics knowledge.

Content

I Audition

- 1. The human hearing system
- 2. Introduction to psychoacoustics
- 3. Basics on noise control engineering

II Room Acoustics

- 1. Wave theory
- 2. Geometrical room acoustics
- 3. Statistical (Sabine) room acoustics

III Transducers for audio

- 1. A brief reminder on electroacoustics
- 2. Electrodynamic transducers
- 3. Electrostatic transducers
- 4. Piezoelectric transducers

IV Microphones

- 1. General properties
- 2. Microphones theory
- 3. Microphone realization

V Loudspeaker design

- 1. The electrodynamic loudspeaker
- 2. Loudspeaker system design (enclosures)
- 3. Loudspeaker realization

VI Electroacoustic absorbers

Keywords

Auditory system Psychoacoustics Room acoustics Microphones Loudspeakers

Learning Prerequisites

Required courses

General physics Circuits and systems

Recommended courses Electroacoustics Radiation and antennas

Important concepts to start the course Electrotechnics: transfer functions, impulse response, electric system characterization, filtering, bode representation Transmission lines: wave propagation equations in 1D, circuit modeling, Kirchhoff theory

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze the auditory system from the physical viewpoint
- the perceptive hearing phenomena through objective measures
- a room with respect to acoustic quality criteria
- room acoustics performance
- Synthesize microphones and loudspeaker systems out of specifications
- · acoustic/electroacoustic specifications from room acoustics requirements
- Analyze microphone and loudspeaker systems

Transversal skills

- Use a work methodology appropriate to the task.
- Set objectives and design an action plan to reach those objectives.

Teaching methods

Ex cathedra lectures Specialized seminars on side topics Exercises in groups Practical work, including numerical simulations

Assessment methods

Final written exam.

Resources

Bibliography

M. Rossi, Audio, Presses Polytechniques Universitaires Romandes, 2007 H. Kutruff, Room Acoustics, Spon Press, 4th edition, 2003

Ressources en bibliothèque

- Audio / Rossi
- Room Acoustics / H. Kutruff

Notes/Handbook

Available on the Lab website (upload on a weekly basis).

Websites

• http://lts2.epfl.ch

Moodle Link

• https://go.epfl.ch/EE-548

Prerequisite for

Master projects, PhD thesis.