Space mission design and operations

Sem.	Туре	l anguage of	English
MA2, MA4	Opt.	teaching	Linglish
MA2, MA4	Opt.	Credits	lits 2 sion Summer ester Spring
MA2, MA4	Opt.	Semester	
E	Opt.	Exam	Oral
		Workload	60h
	Sem. MA2, MA4 MA2, MA4 MA2, MA4 MA2, MA4 E	Sem. Type MA2, MA4 Opt. MA2, MA4 Opt. MA2, MA4 Opt. MA2, MA4 Opt. E Opt.	Sem.TypeMA2, MA4Opt.MA2, MA4Opt.MA2, MA4Opt.MA2, MA4Opt.EOpt.EOpt.Workload

Summary

EE-585

This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space experience of the lecturer.

Content

- Brief review of the fundamental laws of mechanics
- Types of space missions and their objectives
- The Space environment.
- Applied orbital mechanics, including interplanetary trajectories.
- Rendez-vous in space.
- Space propulsion.
- Attitude determination and control.
- On board systems.

• Space vehicles: Space Shuttle, International Space Station, , Falcon 9, Dragon and Crew Dragon capsules, Starship, Hubble and James Webb Space Telescopes.

• Human Spaceflight, Extravehicular Activities and Space Robotics.

2 weekly

2 weekly

Hours

Lecture Number of positions

- Space sustainability.
- Future programs.

Keywords

- Space systems
- Space research
- Space exploration
- Space engineering
- Space operations

Learning Prerequisites

Required courses

• Bachelor level courses in physics, vector analysis, and calculus

Learning Outcomes

By the end of the course, the student must be able to:

• Design space mission with a given objective

Transversal skills

- Communicate effectively with professionals from other disciplines.
- Communicate effectively, being understood, including across different languages and cultures.

Teaching methods

Course dates (2024), all in ELA1, Mondays from 17:15 to 19:00:

February 19 (course introduction) Febrary 26 March 4 March 11 March 18 An extra 2-hours course session will be scheduled to give us a complete 28-hours course. Date TBD

An optional course review will be organized in early June 2024. Date TBD

Expected student activities

actively participate in the course and exercise sessions

Assessment methods

oral examination

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Bibliography provided in the course introduction

Notes/Handbook

Course notes available before each course on Moodle

Websites

- http://www.nasa.gov
- http://www.esa.int

Moodle Link

• https://go.epfl.ch/EE-585