

MICRO-413 Advanced additive manufacturing technologies

Brugger Jürgen, Moser Christophe

Cursus	Sem.	Type
Mechanical engineering	MA2, MA4	Opt.
Microtechnics	MA2, MA4	Opt.

Language of teaching	English	
Credits	3	
Withdrawal	Unauthorized	
Session	Summer	
Semester	Spring	
Exam	Oral	
Workload	90h	
Weeks	14	
Hours	3 weekly	
Lecture	2 weekly	
Practical	1 weekly	
work		
Number of	40	
positions		
It is not allowed to withdraw		

It is not allowed to withdraw from this subject after the registration deadline.

Summary

Advanced 3D forming techniques for high throughput and high resolution (nanometric) for large scale production. Digital manufacturing of functional layers, microsystems and smart systems.

Content

High speed 3D printing with polymers (light based, single photon and two photon)

Fabrication methods for 3D nanometric resolution

Drop on demand digital printing

The TPs are linked to the theoretical material presented in the course.

The last part of the course, Industry speakers are invited to give lectures on selected topics of advanced additive manufacturing

Keywords

Micro-nano 3D manufacturing Drop on demand printing Ink formulation High speed light management Hybrid printing

Learning Prerequisites

Required courses

- 40 students maximum (first come first serve if more than 40).
- required course: ME-413

Learning Outcomes

By the end of the course, the student must be able to:

- Select appropriately advanced printing methods for a given printing requirement
- Realize 3D printing concepts and their limitations
- Match different printing methods to realize multi-functional 3D structures

• Manipulate advanced 3D printing equipment

Assessment methods

Oral (count for 2/3 of the grade) TP (count for 1/3 of the grade)

Resources

Notes/Handbook

Selected sections (PDF format) in books:
Microdrop generator, Eric Lee, CRC press
Surface tension in microsystems, Springer
Additive Manufacturing Technologies, Ian Gibson, David Rosen, Brent Stucker, Springer
Selected papers and course slides.

Moodle Link

• https://go.epfl.ch/MICRO-413