

CH-243 Electrochimie des solutions

Poussal Christopha

Roussel Christophie		
Cursus	Sem.	Type
Chimie	BA5	Obl.
Génie chimique	BA5	Obl.
HES - CGC	Н	Opt.

Langue d'enseignement	français
Crédits	3
Session	Hiver
Semestre	Automne
Examen	Ecrit
Charge	90h
Semaines	14
Heures	3 hebdo
Cours	2 hebdo
Exercices	1 hebdo
Nombre de places	

Résumé

Les étudiants intègrent les notions de potentiels électriques, de niveau de Fermi de l'électron et appliquent l'équation de Nernst. Ils comprennent la structure d'une interface électrifiée. Les générateurs électrochimiques, l'électrolyse et les bases de l'ampérométrie sont présentés

Contenu

- Bases de l'électrochimie
- Interface électrode/solution
- Thermodynamique du transfert d'électron
- Cinétique du transfert d'électron
- Transport de matière à l'interface électrode/solution
- Courbes intensité-potentiel
- Appareillage électrochimique
- Corrosion
- Générateurs électrochimiques
- Potentiométrie
- Ampérométrie
- Electrosynthèse

Mots-clés

Principe de l'électrochimie, interface électrifiée, thermodynamique et cinétique du transfert d'électron, générateurs électrochimiques, electrolyse, potentiométrie, ampérométrie stationnaire et non-stationnaire, électrosynthèse

Compétences requises

Cours prérequis obligatoires

Thermodynamique, Analyse, Algèbre linéaire, Physique Générale

Concepts importants à maîtriser

chimie des solutions, thermodynamique, potentiel chimique, cinétique chimique, potentiels électriques

Acquis de formation

Electrochimie des solutions Page 1 / 2

A la fin de ce cours l'étudiant doit être capable de:

- Prévoir les réactions aux électrodes
- Appliquer la loi de Nernst pour des calculs de concentration et de force électromotrice
- Etablir , analyser et utiliser le diagramme de Pourbaix d'une substance
- Etablir le principe d'un générateur électrochmique et savoir en calculer les caractéristiques
- Visualiser le concept d'interface électrode/solution
- Expliquer les phénomènes de corrosion
- Visualiser la cinétique électrochimique et son impact en ampérométrie

Méthode d'enseignement

Cours(2H) et exercices (1H)

Travail attendu

Méthode d'évaluation

Examen écrit

Encadrement

Autres

Questions à l'enseignant pendant le cours et les séances d'exercice

Ressources

Bibliographie

Une bibliographie détaillée est donnée à la fin de chaque chapitre.

Ressources en bibliothèque

• Electrochimie physique et analytique / Girault

Liens Moodle

• https://go.epfl.ch/CH-243

Electrochimie des solutions Page 2 / 2