

MATH-454 Parallel and high-performance computing

Antolin Sanchez Pablo

Cursus	Sem.	Type
Computational science and Engineering	MA1, MA3	Opt.

Language of English teaching Credits Session Winter Semester Fall Exam Oral Workload 120h Weeks 14 Hours 4 weekly Lecture 2 weekly Exercises 1 weekly Practical 1 weekly work Number of positions

Summary

This course provides insight into a broad variety of High Performance Computing (HPC) concepts and the majority of modern HPC architectures. Moreover, the student will learn to have a feeling about what architectures are suited for several types of algorithms.

Content

HPC overview:

- Today's HPC: Beowulf-style clusters, massively parallel architectures, hybrid computing, accelerators
- · HPC history and background
- · HPC benchmarks explained
- · Multicore systems
- Scaling

Writing HPC code:Shared memory parallelism with OpenMP

- Distributed memory parallelism with MPI
- Hybrid programming with OpenMP and MPI
- · GPGPU primer
- Profiling

Keywords

HPC, Parallelization, MPI, GPU

Learning Prerequisites

Required courses

- Analysis, bachelor level
- Numerical analysis for engineers
- · Matrix algebra

Recommended courses

Programming concepts in scientific computing

Learning Outcomes

By the end of the course, the student must be able to:

- Classify the types of HPC architecture
- · Identify codes suited for parallelization
- Apply the most common parallelization techniques
- Implement algorithms in parallel
- Investigate the performance of parallel code
- Argue about the differences in performance between theory and practice
- Optimize the usage of hardware and software resources depending on the type of algorithm to parallelize

Transversal skills

- Set objectives and design an action plan to reach those objectives.
- Communicate effectively with professionals from other disciplines.
- Access and evaluate appropriate sources of information.
- Write a scientific or technical report.

Teaching methods

Lectures, exercises, project work

Expected student activities

Attendance to lectures, completing exercises, writing a project

Assessment methods

Graded exercises, final project, and oral defense of project

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Moodle Link

• https://go.epfl.ch/MATH-454