

EE-518 Analog circuits for biochip

Carrara Sandro, Schmid Alexandre, Skrivervik Anja

Cursus	Sem.	Type
Biomedical technologies minor	Е	Opt.
Data and Internet of Things minor	E	Opt.
Electrical and Electronical Engineering	MA2, MA4	Opt.

	E
Language of	English
teaching	
Credits	3
Session	Summer
Semester	Spring
Exam	Written
Workload	90h
Weeks	14
Hours	3 weekly
Lecture	2 weekly
Exercises	1 weekly
Number of	
positions	
•	

Summary

Introduction to analog CMOS design for Remote Biosensors on Chip. Understanding and designing of active and remotely powered biosensing systems. Basic understanding of eh wireless transmission of teh obtained signals.

Content

Principles of biosensing: Target/Probe Interactions

Electrochemical biosensing: three-electrode electrochemical cell and its equivalent circuits

Basic CMOS configurations for electrochemical biosensing

Current readers: current-to-voltage and current-to-frequency conversion

Wireless transmission in lossy media: issues on temperature, specific absorption rate (SAR) and efficiency. Antennas for such devices

Regulation aspects of wireless transmission close or in living matter: maximum value of the SAR and the temperature with respect to the frequency of operation and the body tissue.

Architecture of a biomedical implant and major blocks

Fundamentals of biomedical data transmission, data transmitters (active transmitters for RF communication)

Passive data transmitters (backscattering, load modulation), data receivers

Remote powering of implants (types and inductive remote powering, battery charging)

Data conditioning (spike detection, compression)

Keywords

OpAmp, CMOS, biosensors, RF communication, Remote Powering, wireless transmission

Learning Prerequisites

Required courses

Electronics I and II

Learning Outcomes

By the end of the course, the student must be able to:

- Design complete devices for remote biosensing ata system level
- Design simple analog circuits for the biosensor frontend
- Design simple analog circuits for the RF data communication
- Design simple analog circuits for the remote powering operation
- Assess / Evaluate appropriate sources of information

Teaching methods

ex cathedra with supevised exercises

Assessment methods

exam

Resources

Bibliography

- Bio/CMOS interfaces and co-design / Carrara
- Design and optimization of passive UHF RFID systems / Curty

Ressources en bibliothèque

- Bio/CMOS interfaces and co-design / Carrara
- Design and optimization of passive UHF RFID systems / Curty

Notes/Handbook

- 1. Course slides on moodle intranet
- 2. Text Book: S.Carrara, Bio/CMOS Interfaces and Co-Design, Springer, NY, 2012
- 3. Text Book: C. Dehollain, et al., **Design and Optimization of Passive UHF RFID Systems**, Springer, NY, 2006

Moodle Link

• https://go.epfl.ch/EE-518