# EE-431 Advanced VLSI design

Burg Andreas Peter, Levisse Alexandre Sébastien Julien

| Cursus                                  | Sem.     | Туре | Language of         | English  |
|-----------------------------------------|----------|------|---------------------|----------|
| Electrical and Electronical Engineering | MA2, MA4 | Opt. | teaching            | Linglish |
|                                         |          |      | Credits             | 4        |
|                                         |          |      | Session             | Summer   |
|                                         |          |      | Semester            | Spring   |
|                                         |          |      | Exam                | Written  |
|                                         |          |      | Workload            | 120h     |
|                                         |          |      | Weeks               | 14       |
|                                         |          |      | Hours               | 4 weekly |
|                                         |          |      | Lecture             | 2 weekly |
|                                         |          |      | Exercises           | 2 weekly |
|                                         |          |      | Number of positions | ,        |

#### Summary

In this project-based course, students collect hands-on experience with designing full-custom digital VLSI circuits in dynamic logic. They learn to carry out the design and optimization on transistor level, including logic and clock tree, the verification, and the layout.

### Content

#### Introduction to dynamic logic:

An alternative logic style derived from CMOS, used for high-speed logic, as basis for the project

**Introduction to fast adder circuits:** Fast adder structures as basic building block of computer arithmetic

Layout and floorplanning:

Practical guidelines for full-custom layout of custom digital circuits

#### PROJECT (covers 80% of the course):

Build a 1GHz 64 Bit Parallel Prefix Adder in a 90nm technology on transistor level, including logic design, schematic entry, clock tree design, simulation, parasitic estimation, layout, and verification.

#### Keywords

VLSI, CMOS, transistor level, layout, adder, dynamic logic

#### Learning Prerequisites

**Required courses** EE-429 Fundamentals of VLSI design EE-490(b) Lab in EDA based design (or experience with CADENCE Virtuoso)

#### Learning Outcomes

By the end of the course, the student must be able to:

- Compose a transistor-level integrated circuit
- Analyze its performance
- Anticipate layout effects
- Design its layout

Teaching methods Project based course with few lectures

Resources



## **Moodle Link**

• https://go.epfl.ch/EE-431