

EE-431 Advanced VLSI design

Burg Andreas Peter, Levisse Alexandre Sébastien Julien

Cursus	Sem.	Type
Electrical and Electronical Engineering	MA2, MA4	Opt.

Language of **English** teaching Credits Session Summer Semester Spring Written Exam Workload 120h Weeks 14 Hours 4 weekly Lecture 2 weekly Exercises 2 weekly Number of positions

Summary

In this project-based course, students collect hands-on experience with designing full-custom digital VLSI circuits in dynamic logic. They learn to carry out the design and optimization on transistor level, including logic and clock tree, the verification, and the layout.

Content

Introduction to dynamic logic:

An alternative logic style derived from CMOS, used for high-speed logic, as basis for the project

Introduction to fast adder circuits:

Fast adder structures as basic building block of computer arithmetic

Layout and floorplanning:

Practical guidelines for full-custom layout of custom digital circuits

PROJECT (covers 80% of the course):

Build a 1GHz 64 Bit Parallel Prefix Adder in a 90nm technology on transistor level, including logic design, schematic entry, clock tree design, simulation, parasitic estimation, layout, and verification.

Keywords

VLSI, CMOS, transistor level, layout, adder, dynamic logic

Learning Prerequisites

Required courses

EE-429 Fundamentals of VLSI design

EE-490(b) Lab in EDA based design (or experience with CADENCE Virtuoso)

Learning Outcomes

By the end of the course, the student must be able to:

- Compose a transistor-level integrated circuit
- · Analyze its performance
- · Anticipate layout effects
- Design its layout

Teaching methods

Project based course with few lectures

Advanced VLSI design Page 1 / 2

Resources

Moodle Link

• https://go.epfl.ch/EE-431

Advanced VLSI design Page 2 / 2