

•	-			
Sayed Ali H.				
Cursus	Sem.	Туре	Language of	English
Electrical Engineering		Opt.	teaching	Linglight
Electrical and Electronical Engineering	MA2, MA4	Opt.	Credits Session Semester	4
Robotics, Control and Intelligent Systems		Opt.		Summer
			Exam	Written
			Workload	120h
			Weeks	14
			Hours	4 weekly
			Lecture	2 weekly
			Exercises	2 weekly
			Number of positions	

Summary

EE-566

In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.

Content

The course covers the fundamentals of inference and learning from streaming and batch data. Students also learn about the foundations of online and batch machine learning techniques in a unified treatment. In particular, the course covers topics related to optimal inference, regularization, proximal techniques, stochastic learning, generalization theory, Bayes and naive classifiers, nearest-neighbor rules, clustering, decision trees, logistic regression, discriminant analysis, Perceptron, support vector machines, kernel methods, bagging, boosting, random forests, cross-validation, principal component analysis, and neural networks.

Learning Prerequisites

Recommended courses

Prior exposure to probability theory and linear algebra is recommended.

Adaptation and learning

Resources

Moodle Link

• https://go.epfl.ch/EE-566