# Pharmacology and pharmacokinetics

Firsov Dmitri, Kellenberger Stephan Beat

| Cursus                    | Sem.     | Туре |
|---------------------------|----------|------|
| Biotechnology minor       | E        | Opt. |
| Life Sciences Engineering | MA2, MA4 | Opt. |

| Language of teaching   | English  |
|------------------------|----------|
| Credits                | 2        |
| Session                | Summer   |
| Semester               | Spring   |
| Exam                   | Written  |
| Workload               | 60h      |
| Weeks                  | 14       |
| Hours                  | 2 weekly |
| Courses                | 2 weekly |
| Number of<br>positions |          |
| poortionio             |          |

#### Summary

**BIO-478** 

This course introduces the student to the fudamentals of pharmacology, pharmacokinetics and drug-receptor interactions. It discusses also pharmacogenetics and chronopharmacology, to exemplify the challenges of personalized medicine.

#### Content

- Introduction to Pharmacology and general topics of pharmacology
- Pharmacokinetics: principal models and parameters, Drug Absorption, Distribution, Metabolism and Excretion (ADME)
- Chronopharmacology: effect of circadian rhythm on drug action.
- Pharmacogenetics: candidate genes for variable drug response.
- Pharmacodynamics: Drug-target interaction, quantitative description of ligand binding, relationship between ligand binding and functional effect, antagonism; exercises
- · Classes of drug targets: functional and structural aspects, strategies of drug targeting; examples
- General topics of pharmacotherapy

## Keywords

Pharmacokinetics Pharmacodynamics Absorption Distribution Drug metabolism drug elimination Drug Pharmacogenetics Chronopharmacology

## Learning Outcomes

By the end of the course, the student must be able to:

- Describe mechanisms of Drug Absorption, Distribution, Metabolism and Excretion (ADME)
- Describe principal models and parameters of pharmacokinetics
- Explain the role of genetic polymorphisms in variable drug response
- Describe the effect of circadian rhythms on drug action
- Describe the basic principles of pharmacodynamics



• Compute and represent graphically the concentration dependence of agonist and agonist effects and of ligand binding, and the kinetics of drug action

- Describe the principles of drug action on the main classes of drug targets and illustrate it with examples
- Describe the principles of gene therapy and protein therapeutics and illustrate it with examples

# **Teaching methods**

Ex Cathedra and exercises

## Assessment methods

written exam

# Resources

Bibliography

Handouts will be placed on the moodle site of the course.

Most of the topics are covered in the following reference textbooks:

- "Rang and Dale's pharmacology " by James Ritter et al., Elsevier/Churchill Livingstone, 9th edition, 2018
- "Principles of Pharmacology" by DE Golan et al., Lippincott Williams & Wilkins, 4th edition, 2016.
- "Rowland and Tozer's Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications" by Hartmut Derendorf, Stephan Schmidt, 5th edition, 2019.

# Ressources en bibliothèque

- Rang and Dale's pharmacology " by James Ritter et al., Elsevier/Churchill Livingstone, 9th ed.
- Principles of Pharmacology / DE Golan et al., Lippincott Williams & Wilkins

Rowland and Tozer's Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications / Hartmut Derendorf, Stephan Schmidt

## Moodle Link

• https://go.epfl.ch/BIO-478