

# ME-390 Foundations of artificial intelligence

| Kamgarpour | Maryam |
|------------|--------|
|            |        |

| Cursus                       | Sem. | Type |
|------------------------------|------|------|
| Mechanical engineering minor | Н    | Opt. |
| Mechanical engineering       | BA5  | Obl. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 3        |
| Session              | Winter   |
| Semester             | Fall     |
| Exam                 | Written  |
| Workload             | 90h      |
| Weeks                | 14       |
| Hours                | 3 weekly |
| Lecture              | 2 weekly |
| Exercises            | 1 weekly |
| Number of            |          |
| positions            |          |
|                      |          |

### **Summary**

This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanical engineering applications.

#### Content

Tools

Supervised learning: regression and classification

Unsupervised learning: singular value decomposition, K-means

Deep learning: brief introduction to neural networks

Reinforcement learning: brief introduction to policy gradient method

Theory

Optimization: role of convexity, gradient descent, least-squares Statistics: Bayesian approach, bias and variance trade-off

# **Keywords**

machine learning, artificial intelligence

# **Learning Prerequisites**

### Required courses

Real Analysis, Probability and Statistics, Linear Algebra

# **Learning Outcomes**

By the end of the course, the student must be able to:

- · Identify a problem as supervised learning, unsupervised learning and reinforcement learning
- Formulate the problem of regression and classification using a hypothesis class and a loss function
- Model an optimization framework to address learning in the above problems given a linear or feedforward neural network hypothesis class
- Implement the learning problem above on a data set from mechanical engineering examples
- Analyze structure in data using SVD and K-means
- Distinguish training and test-error and tune the model to tradeoff these errors
- Explain the limitations of a data-driven learning approach

#### Transversal skills



- Write a scientific or technical report.
- Take account of the social and human dimensions of the engineering profession.
- · Communicate effectively, being understood, including across different languages and cultures.
- Access and evaluate appropriate sources of information.
- Respect relevant legal guidelines and ethical codes for the profession.

# **Teaching methods**

There will be two-hour lectures and one-hour exercise classes. The lectures will be based on slides and hand-written notes. The exercise hour will focus on assigned theoretical and coding exercises.

# **Expected student activities**

participation in class, working on theory and coding assignments

#### **Assessment methods**

Written final exam (70%) and lab reports (30%)

#### Resources

### **Bibliography**

Machine Learning for Engineers, Using Data to Solve Problems for Physical Systems by Ryan G. McClarren

#### Ressources en bibliothèque

• Machine Learning for Engineers, Using Data to Solve Problems for Physical Systems by Ryan G. McClarren

#### Notes/Handbook

There will be hand-written notes. The notes will be posted after the lecture. Other relevant online resources will be specified for each lecture.

# **Moodle Link**

• https://go.epfl.ch/ME-390