

Introduction to machine learning for bioengineers

Brea Johanni Michael

Cursus	Sem.	Type
Life Sciences Engineering	BA5	Opt.

English Language of teaching Credits Session Winter Semester Fall Written Exam Workload 120h Weeks 14 Hours 4 weekly Lecture 2 weekly Exercises 2 weekly Number of positions

Summary

Students understand basic concepts and methods of machine learning. They can describe them in mathematical terms and can apply them to data using a high-level programming language (julia/python/R).

Content

- · Basic concepts of machine learning
- Linear Regression
- Classification
- Resampling methods and cross-validation
- Linear Model Selection and Regularization
- Moving Beyond Linearity
- Artificial Neural Networks (Deep Learning)
- Tree-Based Methods
- Unsupervised Learning
- Basics of Reinforcement Learning
- Some state-of-the-art machine learning tools for life sciences
- Data Analysis and Machine Learning with a high-level programming language (julia)

Learning Prerequisites

Required courses

Algèbre linéaire, Analyse, Analyse numérique, Probabilities and statistics I & II

Learning Outcomes

By the end of the course, the student must be able to:

- Define basic concepts of machine learning.
- Apply machine learning tools to real-world problems.
- Propose machine learning approaches to analyse data sets in the life sciences.

Teaching methods

Lecture, programming labs and exercises.

Assessment methods

- Programming project during the semester
- Written final exam

Resources

Bibliography

"An Introduction to Statistical Learning, with Applications in R" by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani online available at https://www.statlearning.com

Ressources en bibliothèque

• An Introduction to Statistical Learning

Websites

• https://bio322.epfl.ch

Moodle Link

• https://go.epfl.ch/BIO-322