BIO-322 Introduction to machine learning for bioengineers

Brea Johanni Michae	el			
Cursus	Sem.	Туре	Language of	English
Life Sciences Engineering	BA5	Opt.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Number of positions	English 4 Winter Fall Written 120h 14 4 weekly 2 weekly 2 weekly

Summary

Students understand basic concepts and methods of machine learning. They can describe them in mathematical terms and can apply them to data using a high-level programming language (julia/python/R).

Content

- Basic concepts of machine learning
- Linear Regression
- Classification
- Resampling methods and cross-validation
- Linear Model Selection and Regularization
- Moving Beyond Linearity
- Artificial Neural Networks (Deep Learning)
- Tree-Based Methods
- Unsupervised Learning
- Basics of Reinforcement Learning
- · Some state-of-the-art machine learning tools for life sciences
- Data Analysis and Machine Learning with a high-level programming language (julia)

Learning Prerequisites

Required courses

Algèbre linéaire, Analyse, Analyse numérique, Probabilities and statistics I & II

Learning Outcomes

By the end of the course, the student must be able to:

- Define basic concepts of machine learning.
- Apply machine learning tools to real-world problems.
- Propose machine learning approaches to analyse data sets in the life sciences.

Teaching methods

Lecture, programming labs and exercises.

Assessment methods

- Programming project during the semester
- Written final exam

Resources

Bibliography

"An Introduction to Statistical Learning, with Applications in R" by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani online available at https://www.statlearning.com

Ressources en bibliothèque

An Introduction to Statistical Learning

Websites

• https://bio322.epfl.ch

Moodle Link

• https://go.epfl.ch/BIO-322