ME-482 Biomechanics of the musculoskeletal system

Pioletti Dominique

Cursus	Sem.	Type
Biomedical technologies minor	Е	Opt.
Life Sciences Engineering	MA2, MA4	Opt.
Mechanical engineering minor	Е	Opt.
Mechanical engineering	MA2, MA4	Opt.
Minor in life sciences engineering	Е	Opt.

Language of teaching	English
Credits	5
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	150h
Weeks	14
Hours	3 weekly
Lecture	2 weekly
Exercises	1 weekly
Number of	
positions	

Summary

The basis for a mechanical description of the musculoskeletal system are presented. This description is based on the concepts of solid mechanics, physiology and anatomy of the musculoskeletal system. Concrete examples of the development of implants are also covered.

Content

Biomechanics at the body level (functional anatomy; joint kinematics; forces in the joints). Biomechanics at the tissue level (large deformations; passive and active constitutive laws; identification; laws of evolution). Biomechanics in clinical applications (orthopaedics biomechanics; traumatology, implant development). Mini-project in group.

Keywords

Constitutive laws, Identification, Orthopedics

Learning Prerequisites

Recommended courses

- Elementary knowledge in physiology
- Master the concepts of conservation laws

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the link between the physiology and the mechanical properties of a tissue, B2
- Compute the kinematics and the forces in articulations, B3
- Identify the mechanical behaviour of tissues and fluids from experimental data, B5
- Describe the feedback loop that, starting from a mechanical signal translated into a chemical signal, allows for the adaptation of the mechanical properties of tissues, B9
- Compare the range of validity of different constitutive laws, B7
- Describe the procedure to identity a constitutive law, B14

Teaching methods

The course is organised as theoretical sessions and the realization of a mini-project within a group.

Expected student activities

Exercises to do. Realization of a mini-project in groups of 4, oral presentation of the project and a report of maximum 15 pages.

Assessment methods

- 1/2 of the grade based on oral presentation mini-project
- 1/2 based on the written report of the mini-project

Resources

Bibliography

The course material can be downloaded from the moodle website (http://moodle.epfl.ch/course/view.php?id=1201).

- 1. Skeletal Tissue Mechanics, B. Martin, et al., Springer, 1998 (ISBN 0-387-98474-7)
- 2. Continuum mechanics, Spencer, Longman, 1992 (ISBN 0-582-44282-6)

Ressources en bibliothèque

- Skeletal Tissue Mechanics / Martin B
- · Continuum mechanics / Spencer A

Moodle Link

• https://go.epfl.ch/ME-482