

# MSE-441 Electrochemistry for materials technology

Frantz Cédric, Van Herle Jan

| Cursus                            | Sem.     | Type |
|-----------------------------------|----------|------|
| Materials Science and Engineering | MA1, MA3 | Opt. |

Language of **English** teaching Credits Winter Session Fall Semester Exam During the semester Workload 60h Weeks 14 Hours 2 weekly 2 weekly Lecture Number of positions

### **Summary**

This course aims at familiarizing the student with state of the art applications of electrochemistry in materials science and technology as well as material requirements for electrochemical engineering.

### Content

The course includes a revision of the basic concepts of electrochemistry and of the electrochemical techniques followed by the discussion of relevant applications for surface modifications (galvanic coatings technology, surface structuration, micro/nano fabrication) and energy issues (materials for batteries, fuel cells, hydrogen generation) as well materials aspects in electrochemical engineering (catalytic electrodes, analytical electrochemistry).

## Keywords

Materials, Electrochemistry, Micro-fabrication, Coatings, Energy generation, Energy conversion

## **Learning Prerequisites**

## Required courses

Chimie générale, Introduction à la science des matériaux

## Recommended courses

Métaux et alliages

### Important concepts to start the course

General chemistry: thermodynamics, kinetics, equilibrium, acid-base and complexation reactions, redox reaction.

Metallurgy: microstructure of metals and alloys, mechanical properties, deformation and rupture.

Physics: electrical circuits, transport phenomena

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Use electrochemical concepts and methods for materials science
- Design micro/nano materials via electrochemical processes
- Structure surfaces with tailored properties
- Design appropriate materials for electrochemical systems
- Analyze electrochemical processes and devices



- Manage electrochemical material fabrication
- Describe electrochemical reactions
- Formulate requirements for energy generation and storage materials

## **Teaching methods**

Ex cathedra with excercises and case studies.

### **Expected student activities**

Active participation during lectures and in the resolution of excercies, group work in case studies

#### **Assessment methods**

Oral presentation

## Supervision

Office hours No
Assistants No
Forum No

Others Meetings with teacher upon appointment establihsed by email

#### Resources

## **Bibliography**

Electrochemsitry theory: D. Landolt, Corrosion and Surface Chemistry of Metals, CRC/EPFL Press 2007

## Ressources en bibliothèque

• Corrosion and surface chemistry of metals / Landolt

### Notes/Handbook

Copy of slides available fromt eh website

#### Websites

• http://tic.epfl.ch

## **Moodle Link**

• https://go.epfl.ch/MSE-441