

Groundwater and soil remediation

Cursus	Sem.	Type	Language of	English
Environmental Sciences and Engineering	MA2, MA4	Opt.	teaching	Liigiisii
			Credits	4
			Session	Summer
			Semester	Spring
			Exam	Oral
			Workload	120h
			Weeks	14
			Hours	3 weekly
			Lecture	2 weekly
			Exercises	1 weekly
			Number of	

positions

Remark

Pas donné en 2023-24

Summary

This course covers the essential knowledge of contaminant partitioning and techniques to monitor chemical species, physical extent of contamination and biological processes. In the second part, remediation approaches are tackled. This course represents the fundamentals of remediation.

Content

Fundamental contaminant partitioning principles
Microbial processes and their quantification
Advanced monitoring techniques for contaminated sites
Physical, chemical and biological approaches to remediation

Keywords

partitioning microbial processes bioremediation physico-chemical processes

Learning Prerequisites

Recommended courses

General Chemistry General Biology Microbiology for engineers Soil science

Important concepts to start the course

Fundamentals of soil science, porosity, bulk density Major biological processes, sulfate reduction, denitrification Partitioning of contaminants between phases Groundwater flow

Learning Outcomes

By the end of the course, the student must be able to:

- Synthesize information about a contaminated site
- Design a remediation approach appropriate for a given site

Transversal skills

• Use a work methodology appropriate to the task.

Teaching methods

Lectures, homework and a project (written report and oral presentation)

Expected student activities

The students are expected to attend the lecture, to work on the homeworks and be ready to ask questions during the homework session.

The project entails proposing an appropriate remediation approach for a given site, writing a report and presenting the project in an oral presentation.

Assessment methods

The written test is 50% and the oral presentation is 20% and the report is 30%. Which means that the project represents 50% (oral presentation and report).

Supervision

Office hours No
Assistants No
Forum No

Resources

Bibliography

Reading assignments available on Moodle

Ressources en bibliothèque

• Practical handbook of material flow analysis / Brunner, 2004

Références suggérées par la bibliothèque

- Handbook of material flow analysis / Brunner, 2nd ed., 2017
- Metabolism of the anthroposphere: analysis, evaluation, design / Baccini, Brunner, 2nd ed., 2012

Notes/Handbook

Course notes available at the bookstore.

Moodle Link

• https://go.epfl.ch/ENV-504

Prerequisite for

Specialization in Environmental chemistry and processes