

Beyer Katrin, Lignos Dimitrios, Saloustros Savvas

Sem.	Туре	Language of	English
MA1, MA3	Opt.	teaching	Linglish
MA1, MA3	3 Opt. Credits Session	Credits Session	6 Winter
		Semester Exam Workload Weeks Hours Lecture Exercises	Fall Written 180h 14 5 weekly 3 weekly 2 weekly
	Sem. MA1, MA3 MA1, MA3	Sem.TypeMA1, MA3Opt.MA1, MA3Opt.	Sem.TypeMA1, MA3Opt.MA1, MA3Opt.MA1, MA3Opt.CreditsSessionSemesterExamWorkloadWeeksHoursLectureExercises

Summary

This course provides an introduction to the nonlinear modelling of civil engineering structures.

Content

The course is based on assignments in which students either implement the nonlinear analysis from scratch (for models with truss elements) or use an open-source software (for models with beam elements). The topics that are covered are the following:

• Truss models: Hand calculations and finite element calculations of truss models with material and geometric nonlinearity; Nonlinear material laws: Plasticity

• Beam element formulations: Total and incremental compatibility and equilibrium relations of beams, accounting for large displacements. Differential equations for Euler-Bernoulli and Timoshenko beams. Sectional analysis of RC sections. Beam formulations with concentrated and distributed plasticity approaches (force-based and displacement-based).

- Nonlinear analyses: Solution methods for nonlinear static and dynamic analysis. Damping models.
- Review of past blind prediction tests and comparison between numerical and experimental results.
- Use of nonlinear simulations in civil engineering practice.

Learning Prerequisites

Required courses

CIVIL-321 Numerical modelling of solids and structures (or similar) Courses on structural mechanics

Learning Outcomes

By the end of the course, the student must be able to:

- Implement nonlinear finite element approaches for truss elements
- · Assess / Evaluate the consequences of modelling hypotheses on analysis results
- Choose appropriate finite element formulations for nonlinear structural analysis problems
- Develop models that represent the essentials of the nonlinear response of structures

Assessment methods

Assignments

positions

Project during the semester Final exam

Resources

Ressources en bibliothèque

• Finite element analysis for building assessment / Lourenço & Gaetani

Moodle Link

• https://go.epfl.ch/CIVIL-449