

Selected topics in mechanics of solids and structures

Cursus	Sem.	Туре	Language of	English
Civil & Environmental Engineering		Opt.	teaching	LIIGIIOII
Civil Engineering	MA1, MA3	Opt.	Credits Session	3 Winter
Mechanical engineering	MA1, MA3	Opt.	Semester	Fall
Mechanics		Opt.	Exam	Oral
			Workload Weeks	90h 14
			Hours	3 weekly
			Lecture Exercises	2 weekly 1 weekly
			Number of positions	

Remark

CIVIL-527

Pas donné en 2023-24 - Cours biennal donné une année sur deux

Summary

The class covers the fundamentals of wave dynamics and fracture mechanics. The aim is to deepen their knowledge in advanced topics in mechanics of solids and structures and discuss current research topics. Case studies on catastrophic failure will be presented and discussed in class.

Content

- Wave dynamics
- Introduction to mechanics of rupture
- Fracture Mechanics and Wave Dynamics

Learning Prerequisites

Recommended courses Statics (for GC), Continuum Solid Mechanics (for GC), Structural Mechanices I

Learning Outcomes

By the end of the course, the student must be able to:

- To reinforce the general culture in mechanics of solids and structures of the future engineer by highlighting fundamentals.
- To study some advanced topics in recent or fondamental fields of structural and continuum mechanics
- To understand and model the behaviour of materials under extreme loading conditions

Teaching methods

Ex cathedra, in depth exercises, case studies

Assessment methods Oral exam

Resources

Moodle Link

• https://go.epfl.ch/CIVIL-527