

PHYS-332 Computational physics III

Cursus	Sem.	Туре		En allah	
Physics	BA6	Opt.	Language of teaching	English	
Physics	DAO	Ορι.	teaching Credits Withdrawal Session Semester Exam Workload Weeks Hours Lecture Practical work Number of positions	3 Unauthorized Summer Spring During the semester 90h 14 3 weekly 1 weekly 2 weekly	
			Il n'est pas autorisé de se retirer de cette matière après le délai d'inscription.		

Remark

Pas donné en 2023-24

Summary

This course teaches the students practical skills needed for solving modern physics problems by means of computation. A number of examples illustrate the utility of numerical computations in various domains of physics.

Content

Fourier series and transforms Introduction to the Fourier series and transforms and their application. Mathematical properties: convergence, convolution, correlation, Gibbs phenomenon and the Wiener-Khinchin theorem. Fourier transform on discrete sampled data: aliasing and sampling theorem. Discrete Fourier transform (DFT) and fast Fourier transform (FFT). Applications: spectral analysis, filters. Fourier transforms in higher dimensionality.

Linear systems Introduction and examples. Gauss-Jordan elimination, LU factorization. Iterative refinement: tridiagonal and band diagonal systems. Iterative methods and preconditioning: Jacobi, Richards and gradient methods. Conjugate gradient method. Iterative vs direct methods.

Matrix manipulation and eigenvalues problems Introduction and examples. Properties and decomposition. Poweriteration. QR decomposition and iterative procedure. Singular value decomposition (SVD).

Learning Prerequisites

- **Recommended courses**
- 1st and 2nd years numerical physics courses

Learning Outcomes

By the end of the course, the student must be able to:

- Choose the most suitable algorithm for solving given problem
- Integrate algorithms in computer codes and evaluate their performance
- · Solve actual physics problems using numerical tools

Teaching methods

Ex cathedra presentations, exercises and work under supervision

Assessment methods

3 reports during the semester

Resources

Bibliography

- J. F. James, A Student's guide to Fourier transforms, CUP 2011
- L. N. Trefethen and D. Bau III, Numerical linear algebra, SIAM 1997

Ressources en bibliothèque

- A Student's guide to Fourier transforms / James
- Numerical linear algebra / Trefethen

Moodle Link

• https://go.epfl.ch/PHYS-332