ENG-445 Energy and comfort in buildings

EPFL

Licina	Dusan	Sonta	Andrew
LIGINA	Dusan,	Jona	Andrew

Cursus	Sem.	Туре	Language of	English	
Civil Engineering	MA1, MA3	Obl.	teaching	English	
Energy Science and Technology	MA1, MA3	Opt.	Credits 4 Session Winter Semester Fall	4 Winter	
Energy minor	Н	Opt.			
Mechanical engineering	MA1, MA3	Opt.	Exam	During the	
Minor in Integrated Design, Architecture and Sustainability	Н	Opt.	Workload	Workload 120h	
Territories in transformation and climate minor	Н	Opt.	Hours 3 weekly		
Urban Planning and Territorial Development minor H		Opt.	Lecture	2 weekly	
			Exercises Number of	1 weekly	

positions

Summary

The course presents the fundamentals of energy demand in buildings while emphasizing the need for the comfort and well-being of occupants. In addition, prioritizations and trade-offs between energy and comfort are discussed.

Content

- Energy concepts in buildings
- Building simulation tools: theory and practical exercises
- Indoor thermal comfort
- Indoor air quality
- Building ventilation
- Occupant behavior in buildings
- Passive strategies (solar, thermal mass, natural ventilation, etc.)
- Heat balance at the building level, building envelope
- · Heating and cooling demand in buildings

Keywords

Energy demand; human comfort; indoor environmental quality; building envelope.

Learning Prerequisites

Recommended courses

- Elementary building physics
- General physics: thermodynamics PHYS-106
- Fundamentals of indoor climate CIVIL-212
- Urban thermodynamics CIVIL-309

Important concepts to start the course

- Heat transfer, psychometrics
- Human comfort and indoor climate

• Energy demand in buildings

Learning Outcomes

By the end of the course, the student must be able to:

- Estimate heat flows and energy demand in buildings
- Assess / Evaluate interactions between comfort needs of occupants, building envelope and HVAC systems
- Interpret indoor environmental quality standards
- Use building energy simulation software to assess energy and comfort performance of buildings

Transversal skills

- Take account of the social and human dimensions of the engineering profession.
- Demonstrate the capacity for critical thinking
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Communicate effectively, being understood, including across different languages and cultures.

Teaching methods

Lecture presentations, group discussions, exercises

Assessment methods

2 x written tests on the course material: 50%+50%

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Bibliography

- Lecture notes (primary source)
- Edward Allen. How Buildings Work: The natural Order of Architecture, 3rd ed.

• Y. A. Çengel; A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications. McGraw Hill Education, 5th edition

• ASHRAE Handbook of Fundamentals, 2018

• Different building standards such as ISO 17772, ISO 6946, ASHRAE 55, ASHRAE 62.1, SIA 380/1, SIA 2024.

• Peer-reviewed papers and websites (will be provided throughout the semester)

Ressources en bibliothèque

- How Buildings Work / Allen
- ISO 6946, ISO 17772 (normes ISO en ligne)

- ASHRAE Handbook : Fundamentals (2021)
- SIA 380/1 (normes SIA en ligne)
- ASHRAE 55
- SIA Cahier technique 2024
- ASHRAE 62.1
- Heat and Mass Transfer: Fundamentals and Applications / Çengel & Ghajar

Moodle Link

• https://go.epfl.ch/ENG-445

Prerequisite for

- Thermodynamics of comfort in buildings CIVIL-450
- Indoor air quality and ventilation CIVIL-460