ENV-202 Microbiology for er	Microbiology for engineers		
Bernier-Latmani Rizlan			
Cursus	Sem.	Туре	Lan
Biotechnology minor	Е	Opt.	tead
Environmental Sciences and Engineering	BA4	Obl.	Cre
HES - SIE	Е	Obl.	Ses
			_

- - -. . .

Language of	English	
teaching		
Credits	5	
Session	Summer	
Semester	Spring	
Exam	Written	
Workload	150h	
Weeks	14	
Hours	6 weekly	
Lecture	3 weekly	
Exercises	2 weekly	
Practical	1 weekly	
work		
Number of		
positions		

Summary

"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that have a major impact on planet Earth.

Content

Microbial growth and enzymology: growth theory, influence of environmental parameters, batch and continuous culture, enzymes, enzyme kinetics.

Biogeochemical cycles: Topics covered include (among others): photosynthesis, carbon fixation, fermentation, methanogenesis and methanotrophy, nitrogen and sulfur cycles, degradation of organic pollutants, and biogeochemistry of metals. The degradation pathways and microbial diversity associated with these processes will be considered. Molecular microbial ecology: characterization of microbial diversity and activity; tools and examples of their application.

Keywords

Enzymatic and bacterial growth kinetics, microbial ecology, microbial metabolism, microbial diversity, biogeochemical cycles.

Learning Prerequisites

Required courses ENV-103 Biology Introduction to chemistry

Important concepts to start the course

Chemistry concepts: acid-base and redox equilibrium; biochemical concepts: the citric acid cycle, glycolysis, respiration

Learning Outcomes

By the end of the course, the student must be able to:

- · Identify the type of chemical reaction a given enzyme catalyzes
- Propose an approach to analyze microorganisms in an environmental sample
- Analyze data from a batch or continuous reactor

- Assess / Evaluate enzymatic reaction and microbial growth parameters
- Deduce the role of microorganisms from general information about the system
- Infer chemical processes based on the presence of specific microorganisms

• Propose possible results in a natural or managed environment based on limited information about the microbial community

Transversal skills

- Collect data.
- Write a scientific or technical report.

Teaching methods

Lectures, homework and laboratory practicals.

Expected student activities

(i) prepare for lecture by reading the chapters indicated on Moodle(ii) work on exercises before going to the homework session(iii) prepare for laboratory practicals by reading the description and watching the movie

Assessment methods

During the semester: - Midterm: 30% - Lab report and poster presentation: 20% Exam session: - Written exam: 50%

Resources

Virtual desktop infrastructure (VDI) No

Bibliography

e-book:

https://slsp-epfl.primo.exlibrisgroup.com/permalink/41SLSP_EPF/6bhkks/cdi_askewsholts_vlebooks_9781292235196 e-book (global

edition): https://slsp-epfl.primo.exlibrisgroup.com/permalink/41SLSP_EPF/6bhkks/cdi_proquest_ebookcentral_EBC5203 The two books are equivalent and the reading material will be provided for both.

Ressources en bibliothèque

- Brock Biology of Microorganisms / Madigan
- Biology Essentials for Environmental Engineering / Bernier-Latmani

Notes/Handbook

PDF files with course slides available on Moodle

Moodle Link

• https://go.epfl.ch/ENV-202

Prerequisite for

ENV-304 Water and wastewater treatment

ENV-504 Soil and groundwater remediation Specialization MS: Biological and chemical processes in environmental engineering