EPFL	
------	--

Physics III		
Dil Hugo		
Cursus Sem. Type	Language of	English
Physics BA3 Obl.	teaching	English
	Credits	6
	Session	Winter
	Semester	Fall
	Exam	Written
	Workload	180h
	Weeks	14
	Hours	6 weekly
	Lecture	4 weekly
	Exercises	2 weekly
	Number of	
	positions	

Summary

The students understand and apply the physics of fluids, and the basics of electromagnetism and electronic schemes

Content

Physics of fluids

Fluid kinematics, Navier-Stokes equation; perfect fluid dynamics; incompressible viscous fluid dynamics; eddies; flow stability; Reynolds number; transition to turbulence

Electromagnetism

Electrostatics, electric field and potential; stationary electrical currents; RCL circuits; magnetostatics; electric and magnetic fields in matter; polarization and magnetization; time-dependent electromagnetic field; Faraday's law; Maxwell's equations; electromagnetic energy; Poynting vector; Hertz dipole.

Learning Outcomes

By the end of the course, the student must be able to:

- Formulate simplifying hypotheses of a model of a physical phenomenon
- Solve problems and applications of the treated material
- Critique the results of a model of a physical phenomenon
- Apply developed physical models to problem and application solving
- Design a model of a physical phenomenon

Assessment methods

Written exam

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Bibliography Richard Phillips Feyman: The Feynman Lectures on Physics Kip S. Thorne & Roger D. Blandford: Modern Classical Physics

David J. Griffith: Introduction to Electrodynamics

Ressources en bibliothèque

- The Feynman Lectures on Physics / Feyman
- Modern Classical Physics / Thorne
- Introduction to Electrodynamics / Griffith

Notes/Handbook Course script

Moodle Link

• https://go.epfl.ch/PHYS-200

Prerequisite for

Physique IV